Count time series with excess zeros: A Bayesian perspective using zero-adjusted distributions
DOI:
https://doi.org/10.5433/1679-0375.2022v43n2p147Keywords:
Processo ARMA(p, q), Dados de contagem, Metropolis-hastingsAbstract
Models for count data which are temporally correlated have been studied using many conditional distributions, such as the Poisson distribution, and the insertion of different dependence structures. Nonetheless, excess of zeros and over dispersion may be observed during the counting process and need to be considered when modelling and choosing a conditional distribution. In this paper, we propose models for counting time series using zero-adjusted distributions by inserting a dependence structure following the ARMA(p, q) process on a Bayesian framework. We perform a simulation study using the proposed Bayesian analysis and analyse the monthly time series of the number of deaths due to dengue haemorrhagic fever (ICD-A91) in Brazil.
References
ANDRADE, B.; ANDRADE, M.; EHLERS, R. Bayesian GARMA models for count data. Communications in statistics: case studies, data analysis and applications, Philadelphia, v. 1, n. 4, p. 192-205, 2015. DOI: https://doi.org/10.1080/23737484.2016.1190307.
ALQAWBA, M.; DIAWARA, N.; CHAGANTY, N. Zero-inflated count time series models using Gaussian copula. Sequential Analysis, New York, v. 38, n. 3, p. 342-357, 2019. DOI: https://doi.org/10.1080/07474946.2019.1648922.
BARRETO-SOUZA, W. Mixed Poisson INAR(1) processes. Statistical papers, [London], v. 60, n. 6, p. 2119-2139, 2017. DOI: https://doi.org/ 10.1007/s00362-017-0912-x.
BENJAMIN, M.; RIGBY, R.; STASINOPOULOS, M. Generalized autoregressive moving average models. Journal of the American Statistical Association, Washington, v. 98, n. 461, p. 214-223, 2003. DOI: https://doi.org/10.1198/016214503388619238.
BOX, G.; PIERCE, D. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, Washington, v. 65, n. 332, p. 1509-1526, 1970. DOI: https://doi.org/10.2307/2284333.
BRASIL. Ministério da Saúde. Mortalidade - Brasil. Brasília: MS, [2022]. Available from: http://tabnet.datasus.gov.br/. Access in: Jan. 2022.
BROEK, J. A score test for zero inflation in a Poisson distribution. Biometrics, New York, n. 1, p. 738-743, 1995. DOI: https://doi.org/10.2307/2532959.
BROEMELING, L. Bayesian analysis of time series. New York: CRC Press, 2019.
CANOVA, F.; HANSEN, B. Are seasonal patterns constant over time? a test for seasonal stability. Journal of Business & Economic Statistics, Washington, v. 13, n. 3, p. 237-252, 1995. DOI: https://doi.org/10.2307/1392184.
CHIVERS, C. MHadaptive: General Markov chain Monte Carlo for Bayesian inference using adaptive Metropolis-Hastings sampling. 2015. Available from: https://CRAN.R-project.org/package=MHadaptive. Access in: Jan. 2022.
COX, D.; STUART, A. Some quick sign tests for trend in location and dispersion. Biometrika, Oxford, v. 42, n. 1/2, p. 80-95, 1955. DOI: https://doi.org/10.2307/2333424.
DUANE, S.; KENNEDY, A.; PENDLETON, B.; ROWETH, D. Hybrid Monte Carlo. Physics letters B, Amsterdam, v. 195, n. 2, p. 216-222, 1987. DOI: https://doi.org/10.1016/0370-2693(87)91197-X.
FENG, C. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. Journal of Statistical Distributions and Applications, Heidelberg, v. 8, n. 1, p. 1-19, 2021. DOI: https://doi.org/10.1186/s40488-021-00121-4.
GEWEKE, J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Staff Report, [s. l.], n. 148, p. 1-29, 1991.
GHAHRAMANI, M.; WHITE, S. Time series regression for zero-inflated and over dispersed count data: a functional response model approach. Journal of statistical theory and practice, Greensboro, v. 14, n. 2, p. 1-18, 2020. DOI: https://doi.org/10.1007/s42519-020-00094-8.
GONÇALVES, J.; BARRETO-SOUZA, W. Flexible regression models for counts with high-inflation of zeros. Metron, [s. l.], v. 78, n. 1, p. 71-95, 2020. DOI: https://doi.org/10.1007/s40300-020-00163-9.
HASHIM, L.; HASHIM, K.; SHIKER, M. An application comparison of two Poisson models on zero count data. Journal of Physics, [Bristol], v. 1818, n. 1, 2021. DOI: https://doi.org/10.1088/1742- 6596/1818/1/012165.
HEIDELBERGER, P.; WELCH, P. Simulation run length control in the presence of an initial transient. Operations Research, Switzerland, v. 31, n. 6, p. 1109-1144, 1983. DOI: https://doi.org/0030- 364X/83/3106-1109 $01.25.
HILBE, J. Modeling count data. Cambridge: Cambridge University Press, 2014.
KORENEV, B. Bessel functions and their applications. New York: CRC Press, 2002.
LAMBERT, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, Richmond v. 34, n. 1, p. 1-14, 1992. DOI: https://doi.org/10.2307/1269547.
LÜDECKE, D.; BEN-SHACHAR, M.; PATIL, I.; WAGGONER, P.; MAKOWSKI, D. An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, Chicago, v. 6, n. 60, p. 31-39, 2021. DOI 10.21105/joss.03139.
MULLAHY, J. Specification and testing of some modified count data models. Journal of Econometrics, Amsterdam, v. 33. n. 3, p. 341-365, 1986. DOI: https://doi.org/10.1016/0304-4076(86)90002-3.
NELDER, J.; WEDDERBURN, R. Generalized linear models. Journal of the Royal Statistical Society, London, v. 135, p. 370-384, 1972. DOI: https://doi.org/10.2307/2344614.
PAYNE, E.; HARDIN, J.; EGEDE, L.; RAMAKRISH- NAN, V.;SELASSIE, A.; GEBREGZIABHER, M. Approaches for dealing with various sources of over dispersion in modeling count data: Scale adjustment versus modeling. Statistical Methods in Medical Research, Singapore v. 26, n. 4, p. 1802-1823, 2017. DOI: https://doi.org/10.1177/0962280215588569.
RAFTERY, A.; LEWIS, S. Comment: One long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Statistical Science, [Commack], v. 7, n. 4, p. 493-497, 1992. DOI: https://doi.org/10.1214/ss/1177011143.
RIGBY, R.; STASINOPOULOS, M.; HELLER, G.; DE BASTIANI, F. Distributions for modeling location, scale, and shape. New York: Chapman and Hall: CRC, 2019.
ROBERT, C. Modified Bessel functions and their applications in probability and statistics. Statistics & Probability Letters, Amsterdam, v. 9, n. 2, p. 155-161, 1990. DOI: https://doi.org/10.1016/0167- 7152(92)90011-S.
ROCHA, A.; CRIBARI-NETO, F. Beta autoregressive moving average models. Test, [London], v. 18, n. 3, p. 529-545, 2009. DOI: https://doi.org/10.1007/s11749-008-0112-z.
SÁFADI, T.; MORETTIN, P. A Bayesian analysis of autoregressive models with random normal coefficients. Journal of Statistical Computation and Simulation, Philadelphia, v. 73, n. 8, p. 563-573, 2003. DOI: https://doi.org/10.1080/0094965031000136003.
SATHISH, V.; MUKHOPADHYAY, S.; TIWARI, R. Autoregressive and moving average models for zero-inflated count time series. Statistica Neerlandica, Gravenhage, v. 76, n. 2, p. 190-218, 2021. DOI: https://doi.org/10.1111/stan.12255.
STASINOPOULOS, M.; RIGBY, R. Gamlss dist: distributions for generalized additive models for location scale and shape. 2020. Available from: https://cran.r-project.org/web/packages/gamlss.dist/gamlss.dist.pdf. Access in: Jan. 2022.
TAWIAH, K.; IDDRISU, W.; ASOSEGA, K. Zero inflated time series modelling of COVID-19 deaths in Ghana. Journal of Environmental and Public health, New York, v. 2021, p. 1-9, 2021. DOI 10.1155/2021/5543977.
WORLD HEALTH ORGANIZATION. ICD-10: International statistical classification of dis- eases and related health problems. 2. nd. Geneva: WHO, 2004. Available from: https://apps.who.int/iris/handle/10665/42980. Access in: Nov. 2022.
YANG, M.; ZAMBA, G.; CAVANAUGH, J. Markov regression models for count time series with excess zeros: a partial likelihood approach. Statistical Methodology, [London], v. 14, p. 26-38, 2013. DOI: https://doi.org/10.1016/j.stamet.2013.02.001.
ZUO, G.; FU, K.; DAI, X.; ZHANG, L. Generalized poisson hurdle model for count data and its application in ear disease. Entropy, Basel, v. 23, n. 9, p. 1-16, 2021. DOI: https://doi.org/10.3390/e23091206.
ZUUR, A.; IENO, E.; WALKER, N.; SAVELIEV, A.; SMITH, G. Mixed effects models and extensions in ecology with R. New York: Springer, 2009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Exact and Technological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.