Distribuição Poisson Zero-Ajustada com Parâmetros Variando no Tempo para a Análise de Séries Temporais de Contagem

Distribuição Poisson Zero-Ajustada com Parâmetros Variando no Tempo para a Análise de Séries Temporais de Contagem

Autores

DOI:

https://doi.org/10.5433/1679-0375.2024.v45.49943

Palavras-chave:

inferência bayesiana, dados de contagem, excesso de zeros, garma(p, q), influenza

Resumo

Diversos estudos têm utilizado as extensões dos modelos ARMA para a análise de séries temporais não Gaussianas. Uma delas corresponde a Generalized Autoregressive Moving Average, GARMA, possibilitando a modelagem de séries de contagem a partir de distribuições como a Poisson. Na literatura, a classe GARMA está sendo ampliada para outras distribuições, com o intuito de comportar as características típicas de contagens, envolvendo sub ou superdispersão e excesso de zeros. Este trabalho tem como objetivo propor uma abordagem baseada na classe GARMA para a análise de séries de contagem com excesso de zeros, assumindo distribuição Poisson zero-ajustada com parâmetros variando no tempo, de modo a comportar a correlação serial e permitir realizar previsões de contagens e da probabilidade de zeros. Para a inferência, adotou-se a análise Bayesiana com o uso do algoritmo Monte Carlo Hamiltoniano para a amostragem da posteriori conjunta. Ao longo do estudo, foi realizado um estudo de simulação e uma aplicação em dados de mortalidade em decorrência da influenza. Os resultados da aplicação indicaram a utilidade do modelo ao se estimar a probabilidade de não ocorrência e o número de óbitos em períodos futuros.

Biografia do Autor

Luiz Otávio de Oliveira Pala, Universidade Federal de Lavras

Prof. Dr., Departamento de Estatística, UFLA, Lavras, MG, Brasil e Doutorando, Estatística e Experimentação Agrícola, UFLA, Lavras, MG, Brasil. luizpala@ufla.br

Thelma Sáfadi, Universidade Federal de Lavras

Prof. Dr., Departamento de Estatística, UFLA, Lavras, MG, Brasil. safadi@ufla.br

Referências

Alqawba, M., Diawara, N., & Chaganty, N. (2019). Zero-inflated count time series models using Gaussian copula. Sequential analysis, 38(3), 342–357. DOI: https://doi.org/10.1080/07474946.2019.1648922

Andrade, B., Andrade, M., & Ehlers, R. (2015). Bayesian GARMA models for count data. Communications in statistics: case studies, data analysis and applications, 1(4), 192–205. DOI: https://doi.org/10.1080/23737484.2016.1190307

Aragaw, A., Azene, A., & Workie, M. (2022). Poisson logit hurdle model with associated factors of perinatal mortality in Ethiopia. Journal of big data, 9(16), 1–11. DOI: https://doi.org/10.1186/s40537-022-00567-6

Barreto-Souza, W. (2017). Mixed Poisson INAR(1) processes. Statistical papers, 60, 2119–2139. DOI: https://doi.org/10.1007/s00362-017-0912-x

Benjamin, M., Rigby, R., & Stasinopoulos, M. (2003). Generalized Autoregressive Moving Average Models. Journal of the American statistical association, 98(461), 214–223. DOI: https://doi.org/10.1198/016214503388619238

Bertoli, W., Conceição, K. S., Andrade, M. G., & Louzada, F. (2021). A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data. Entropy, 23(646), 1–25. DOI: https://doi.org/10.3390/e23060646

Box, G., & Jenkins, G. (1976). Time series analysis, forecasting and control. Holden-Day.

Box, G., & Pierce, D. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American statistical association, 65(332), 1509–1526. DOI: https://doi.org/10.1080/01621459.1970.10481180

Briet, O., Amerasinghe, P., & Vounatsou, P. (2013). Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers. Plos one, 8(6), 1–9. DOI: https://doi.org/10.1371/journal.pone.0065761

Broemeling, L. (2019). Bayesian analysis of time series. CRC Press. DOI: https://doi.org/10.1201/9780429488443

Burda, M., & Maheu, J. (2013). Bayesian adaptive Hamiltonian Monte Carlo with an application to highdimensional BEKK GARCH models. Studies in nonlinear dynamics and econometrics, 17, 345–372. DOI: https://doi.org/10.1515/snde-2013-0020

Canova, F., & Hansen, B. (1995). Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability. Journal of business & economic statistics, 13(3), 237–252. DOI: https://doi.org/10.1080/07350015.1995.10524598

Conceição, K., Suzuki, A., & Andrade, M. (2021). A Bayesian approach for zero-modified Skellam model with Hamiltonian MCMC. Statistical methods & applications, 30(2), 747–765. DOI: https://doi.org/10.1007/s10260-020-00541-7

Cox, D., & Stuart, A. (1955). Some Quick Sign Tests for Trend in Location and Dispersion. Biometrika, 42(1), 80–95. DOI: https://doi.org/10.1093/biomet/42.1-2.80

Davis, R., Fokianos, K., Holan, S., Joe, H., Livsey, J., Lund, R., Pipiras, V., & Ravishanker, N. (2021). Count time series: A methodological review. Journal of the American statistical association, 116(55), 1533–1547. DOI: https://doi.org/10.1080/01621459.2021.1904957

Duane, S., Kennedy, A., Pendleton, B., & Roweth, D. (1987). Hybrid Monte Carlo. Physics letters B, 195(2), 216–222. DOI: https://doi.org/10.1016/0370-2693(87)91197-X

Dunn, P., & Smyth, G. (1996). Randomized Quantile Residuals. Journal of computational and graphical statistics, 5(3), 236–244. DOI: https://doi.org/10.1080/10618600.1996.10474708

Ehlers, R. (2019). A Conway-Maxwell-Poisson GARMA Model for Count Data. Arxiv, 1–11.

Feng, C. (2021). A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. Journal of statistical distributions and applications, 8(1), 1–19. DOI: https://doi.org/10.1186/s40488-021-00121-4

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2014). Bayesian data analysis. DOI: https://doi.org/10.1201/b16018

Ghahramani, M., & White, S. (2020). Time Series Regression for Zero-Inflated and Overdispersed Count Data: A Functional Response Model Approach. Journal of statistical theory and practice, 14(2), 1–18. DOI: https://doi.org/10.1007/s42519-020-00094-8

Hashim, L., Hashim, K., & Shiker, M. (2021). An Application Comparison of Two Poisson Models on Zero Count Data. Journal of physics, 1818. DOI: https://doi.org/10.1088/1742-6596/1818/1/012165

Hoffman, M., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of machine learning research, 15(1), 1593–1623.

Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia computer science, 48, 173–179. DOI: https://doi.org/10.1016/j.procs.2015.04.167

Maiti, R., Biswas, A., & Chakraborty, B. (2018). Modelling of low count heavy tailed time series data consisting large number of zeros and ones. Statistical Methods & Applications, 27(3), 407–435. DOI: https://doi.org/10.1007/s10260-017-0413-z

McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman & Hall. DOI: https://doi.org/10.1201/9780429029608

Melo, M., & Alencar, A. (2020). Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data. Journal of time series analysis, 41(6), 830–857. DOI: https://doi.org/10.1111/jtsa.12550

Mikis Stasinopoulos and Bob Rigby and Paul Eilers. (2016). Gamlss.util: Gamlss utilities [R package version 4.3-4].

Ministério da Saúde. (2022). Morbidade hospitalar do Sistema Único de Saúde.

Neal, R. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X. Meng (Eds.), Handbook of markov chain monte carlo (pp. 1–51). Chapman & Hall. DOI: https://doi.org/10.1201/b10905-6

Payne, E., Hardin, J., Egede, L., Ramakrishnan, V., Selassie, A., & Gebregziabher, M. (2017). Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling. Statistical methods in medical research, 26(4), 1802–1823. DOI: https://doi.org/10.1177/0962280215588569

R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.

Rigby, R., Stasinopoulos, M., Heller, G., & Bastiani, F. (2019). Distributions for modeling location, scale, and shape: using GAMLSS in R. Chapman & Hall. DOI: https://doi.org/10.1201/9780429298547

Sáfadi, T., & Morettin, P. (2003). A Bayesian analysis of autoregressive models with random normal coefficients. Journal of statistical computation and simulation, 73(8), 563–573. DOI: https://doi.org/10.1080/0094965031000136003

Sales, L., Alencar, A., & Ho, L. (2022). The BerG generalized autoregressive moving average model for count time series. Computers & industrial engineering, 168, 1–13. DOI: https://doi.org/10.1016/j.cie.2022.108104

Sathish, V., Mukhopadhyay, S., & Tiwari, R. (2021). Autoregressive and moving average models for zero-inflated count time series. Statistica Neerlandica, 76(2), 1–23. DOI: https://doi.org/10.1111/stan.12255

Silva, R. (2020). Generalized Autoregressive Neural Network Models. ArXiv, 1, -11.

Stan Development Team. (2022). RStan: the R interface to Stan [R package version 2.26.13].

Stasinopoulos, M., & Rigby, R. (2020). Distributions for Generalized Additive Models for Location Scale and Shape [R package version 5.1-6].

Tawiah, K., Iddrisu, W., & Asosega, K. (2021). Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana. Journal of environmental and public health, 1–9. DOI: https://doi.org/10.1155/2021/5543977

Tian, G., Liu, Y., Tang, M., & Jiang, X. (2018). Type I multivariate zero-truncated/adjusted Poisson distributions with applications. Journal of computational and applied mathematics, 344, 132–153. DOI: https://doi.org/10.1016/j.cam.2018.05.014

Zuur, A., Ieno, E., Walker, N., Saveliev, A., & Smith, G. (2009). Mixed effects models and extensions in ecology with R. Springer. DOI: https://doi.org/10.1007/978-0-387-87458-6

Publicado

2024-05-15

Como Citar

Pala, L. O. de O., & Sáfadi, T. (2024). Distribuição Poisson Zero-Ajustada com Parâmetros Variando no Tempo para a Análise de Séries Temporais de Contagem. Semina: Ciências Exatas E Tecnológicas, 45, e-49943. https://doi.org/10.5433/1679-0375.2024.v45.49943

Edição

Seção

Estatística
Loading...