Distribuição Poisson Zero-Ajustada com Parâmetros Variando no Tempo para a Análise de Séries Temporais de Contagem
DOI:
https://doi.org/10.5433/1679-0375.2024.v45.49943Palavras-chave:
inferência bayesiana, dados de contagem, excesso de zeros, garma(p, q), influenzaResumo
Diversos estudos têm utilizado as extensões dos modelos ARMA para a análise de séries temporais não Gaussianas. Uma delas corresponde a Generalized Autoregressive Moving Average, GARMA, possibilitando a modelagem de séries de contagem a partir de distribuições como a Poisson. Na literatura, a classe GARMA está sendo ampliada para outras distribuições, com o intuito de comportar as características típicas de contagens, envolvendo sub ou superdispersão e excesso de zeros. Este trabalho tem como objetivo propor uma abordagem baseada na classe GARMA para a análise de séries de contagem com excesso de zeros, assumindo distribuição Poisson zero-ajustada com parâmetros variando no tempo, de modo a comportar a correlação serial e permitir realizar previsões de contagens e da probabilidade de zeros. Para a inferência, adotou-se a análise Bayesiana com o uso do algoritmo Monte Carlo Hamiltoniano para a amostragem da posteriori conjunta. Ao longo do estudo, foi realizado um estudo de simulação e uma aplicação em dados de mortalidade em decorrência da influenza. Os resultados da aplicação indicaram a utilidade do modelo ao se estimar a probabilidade de não ocorrência e o número de óbitos em períodos futuros.
Downloads
Referências
Alqawba, M., Diawara, N., & Chaganty, N. (2019). Zero-inflated count time series models using Gaussian copula. Sequential analysis, 38(3), 342–357. DOI: https://doi.org/10.1080/07474946.2019.1648922
Andrade, B., Andrade, M., & Ehlers, R. (2015). Bayesian GARMA models for count data. Communications in statistics: case studies, data analysis and applications, 1(4), 192–205. DOI: https://doi.org/10.1080/23737484.2016.1190307
Aragaw, A., Azene, A., & Workie, M. (2022). Poisson logit hurdle model with associated factors of perinatal mortality in Ethiopia. Journal of big data, 9(16), 1–11. DOI: https://doi.org/10.1186/s40537-022-00567-6
Barreto-Souza, W. (2017). Mixed Poisson INAR(1) processes. Statistical papers, 60, 2119–2139. DOI: https://doi.org/10.1007/s00362-017-0912-x
Benjamin, M., Rigby, R., & Stasinopoulos, M. (2003). Generalized Autoregressive Moving Average Models. Journal of the American statistical association, 98(461), 214–223. DOI: https://doi.org/10.1198/016214503388619238
Bertoli, W., Conceição, K. S., Andrade, M. G., & Louzada, F. (2021). A New Regression Model for the Analysis of Overdispersed and Zero-Modified Count Data. Entropy, 23(646), 1–25. DOI: https://doi.org/10.3390/e23060646
Box, G., & Jenkins, G. (1976). Time series analysis, forecasting and control. Holden-Day.
Box, G., & Pierce, D. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American statistical association, 65(332), 1509–1526. DOI: https://doi.org/10.1080/01621459.1970.10481180
Briet, O., Amerasinghe, P., & Vounatsou, P. (2013). Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers. Plos one, 8(6), 1–9. DOI: https://doi.org/10.1371/journal.pone.0065761
Broemeling, L. (2019). Bayesian analysis of time series. CRC Press. DOI: https://doi.org/10.1201/9780429488443
Burda, M., & Maheu, J. (2013). Bayesian adaptive Hamiltonian Monte Carlo with an application to highdimensional BEKK GARCH models. Studies in nonlinear dynamics and econometrics, 17, 345–372. DOI: https://doi.org/10.1515/snde-2013-0020
Canova, F., & Hansen, B. (1995). Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability. Journal of business & economic statistics, 13(3), 237–252. DOI: https://doi.org/10.1080/07350015.1995.10524598
Conceição, K., Suzuki, A., & Andrade, M. (2021). A Bayesian approach for zero-modified Skellam model with Hamiltonian MCMC. Statistical methods & applications, 30(2), 747–765. DOI: https://doi.org/10.1007/s10260-020-00541-7
Cox, D., & Stuart, A. (1955). Some Quick Sign Tests for Trend in Location and Dispersion. Biometrika, 42(1), 80–95. DOI: https://doi.org/10.1093/biomet/42.1-2.80
Davis, R., Fokianos, K., Holan, S., Joe, H., Livsey, J., Lund, R., Pipiras, V., & Ravishanker, N. (2021). Count time series: A methodological review. Journal of the American statistical association, 116(55), 1533–1547. DOI: https://doi.org/10.1080/01621459.2021.1904957
Duane, S., Kennedy, A., Pendleton, B., & Roweth, D. (1987). Hybrid Monte Carlo. Physics letters B, 195(2), 216–222. DOI: https://doi.org/10.1016/0370-2693(87)91197-X
Dunn, P., & Smyth, G. (1996). Randomized Quantile Residuals. Journal of computational and graphical statistics, 5(3), 236–244. DOI: https://doi.org/10.1080/10618600.1996.10474708
Ehlers, R. (2019). A Conway-Maxwell-Poisson GARMA Model for Count Data. Arxiv, 1–11.
Feng, C. (2021). A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. Journal of statistical distributions and applications, 8(1), 1–19. DOI: https://doi.org/10.1186/s40488-021-00121-4
Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2014). Bayesian data analysis. DOI: https://doi.org/10.1201/b16018
Ghahramani, M., & White, S. (2020). Time Series Regression for Zero-Inflated and Overdispersed Count Data: A Functional Response Model Approach. Journal of statistical theory and practice, 14(2), 1–18. DOI: https://doi.org/10.1007/s42519-020-00094-8
Hashim, L., Hashim, K., & Shiker, M. (2021). An Application Comparison of Two Poisson Models on Zero Count Data. Journal of physics, 1818. DOI: https://doi.org/10.1088/1742-6596/1818/1/012165
Hoffman, M., & Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of machine learning research, 15(1), 1593–1623.
Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia computer science, 48, 173–179. DOI: https://doi.org/10.1016/j.procs.2015.04.167
Maiti, R., Biswas, A., & Chakraborty, B. (2018). Modelling of low count heavy tailed time series data consisting large number of zeros and ones. Statistical Methods & Applications, 27(3), 407–435. DOI: https://doi.org/10.1007/s10260-017-0413-z
McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman & Hall. DOI: https://doi.org/10.1201/9780429029608
Melo, M., & Alencar, A. (2020). Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data. Journal of time series analysis, 41(6), 830–857. DOI: https://doi.org/10.1111/jtsa.12550
Mikis Stasinopoulos and Bob Rigby and Paul Eilers. (2016). Gamlss.util: Gamlss utilities [R package version 4.3-4].
Ministério da Saúde. (2022). Morbidade hospitalar do Sistema Único de Saúde.
Neal, R. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X. Meng (Eds.), Handbook of markov chain monte carlo (pp. 1–51). Chapman & Hall. DOI: https://doi.org/10.1201/b10905-6
Payne, E., Hardin, J., Egede, L., Ramakrishnan, V., Selassie, A., & Gebregziabher, M. (2017). Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling. Statistical methods in medical research, 26(4), 1802–1823. DOI: https://doi.org/10.1177/0962280215588569
R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
Rigby, R., Stasinopoulos, M., Heller, G., & Bastiani, F. (2019). Distributions for modeling location, scale, and shape: using GAMLSS in R. Chapman & Hall. DOI: https://doi.org/10.1201/9780429298547
Sáfadi, T., & Morettin, P. (2003). A Bayesian analysis of autoregressive models with random normal coefficients. Journal of statistical computation and simulation, 73(8), 563–573. DOI: https://doi.org/10.1080/0094965031000136003
Sales, L., Alencar, A., & Ho, L. (2022). The BerG generalized autoregressive moving average model for count time series. Computers & industrial engineering, 168, 1–13. DOI: https://doi.org/10.1016/j.cie.2022.108104
Sathish, V., Mukhopadhyay, S., & Tiwari, R. (2021). Autoregressive and moving average models for zero-inflated count time series. Statistica Neerlandica, 76(2), 1–23. DOI: https://doi.org/10.1111/stan.12255
Silva, R. (2020). Generalized Autoregressive Neural Network Models. ArXiv, 1, -11.
Stan Development Team. (2022). RStan: the R interface to Stan [R package version 2.26.13].
Stasinopoulos, M., & Rigby, R. (2020). Distributions for Generalized Additive Models for Location Scale and Shape [R package version 5.1-6].
Tawiah, K., Iddrisu, W., & Asosega, K. (2021). Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana. Journal of environmental and public health, 1–9. DOI: https://doi.org/10.1155/2021/5543977
Tian, G., Liu, Y., Tang, M., & Jiang, X. (2018). Type I multivariate zero-truncated/adjusted Poisson distributions with applications. Journal of computational and applied mathematics, 344, 132–153. DOI: https://doi.org/10.1016/j.cam.2018.05.014
Zuur, A., Ieno, E., Walker, N., Saveliev, A., & Smith, G. (2009). Mixed effects models and extensions in ecology with R. Springer. DOI: https://doi.org/10.1007/978-0-387-87458-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Luiz Otávio de Oliveira Pala, Thelma Sáfadi
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os Direitos Autorais para artigos publicados nesta revista são de direito do autor. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais. A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.