Carbonation of concretes containing LC³ cements with different supplementary materials
DOI:
https://doi.org/10.5433/1679-0375.2022v43n2p161Keywords:
concrete, LC³-50, metakaolin, supplementary cimenticious materials, clinkerAbstract
Due to the clinkerization process during the Portland cement production, large amounts of CO2 are emitted, increasing the effects related to climate change (approximately 5-10% of global CO2 emissions come from cement production), consequently, the seek for alternatives to mitigate these high emissions are necessary. The use of supplementary cementitious materials (SCM) to partial replace of Portand clinker/cement has been the subject of different research, including the use of LC3 cements (Limestone Calcined Clay Cements), where up to 50% of Portland clinker can be replaced, however, cement industry has already used other
supplementary cementitious materials with pozzolanic activities in commercial cements. In this sense, this work evaluates the performance of concretes containing LC3 mixtures with the presence of different SCM (silica fume, fly ash, sugarcane bagasse ash and açaí stone ash) regarding durability issues by carbonation. The results showed that all concretes with LC3 presented higher carbonation fronts in relation to the reference concrete, with Portland cement, due to the lower availability of calcium to react with the CO2 that penetrates into the concrete pores, so the adoption of curing procedures and coatings are recommended.
Downloads
References
ALMENARES, R. S.; VIZCAÍNO, L. M.; DAMAS, S.; MATHIEU, A.; ALUJAS, A.; MARTIRENA, F. Industrial calcination of kaolinitic clays to make reactive pozzolans. Case studies in Construction Materials [s. l.], v. 6, p. 225-232, 2017. DOI: https://doi.org/10.1016/j.cscm.2017.03.005. DOI: https://doi.org/10.1016/j.cscm.2017.03.005
ANTONI, M.; ROSSEN, J.; MARTIRENA, F.; SCRIVENER, K. Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, Oxford, v. 42, p. 1579-1589, 2012. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006
APOSTOLOPOULOS, C. A.; DEMIS, S.; PAPADAKIS, V. G. Chloride-induced corrosion of steel reinforcement - mechanical performance and pit depth analysis. Construction and Building Materials, Guildford, v. 38, p. 139-146, 2013. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.087. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.087
AVET, F.; SNELLINGS, R.; DIAZ, A. A.; HAHA, M. B.; SCRIVENER, K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, Oxford, v. 85, p. 1-11, 2016. DOI: http://dx.doi.org/10.1016/j.cemconres.2016.02.015. DOI: https://doi.org/10.1016/j.cemconres.2016.02.015
BALESTRA, C. E. T.; LIMA, M. G.; SILVA, A. R.; MEDEIROS-JUNIOR, R. A. Corrosion degree effect on nominal and effective strengths of naturally corroded reinforcement. Journal of Materials in Civil Engineering, [Stevenage], v. 28, n. 10, p. 1-9, 2016. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001599. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001599
BALESTRA, C. E. T.; NAKANO, A. Y.; SAVARIS, G.; MEDEIROS-JUNIOR, R. A. Reinforcement corrosion risk of marine concrete structures evaluated through electrical resistivity: Proposal of parameters based on field structures. Ocean Engineering, [Glasgow], v. 187, p. 1-13, 2019. DOI: https://doi.org/10.1016/j.oceaneng.2019.106167. DOI: https://doi.org/10.1016/j.oceaneng.2019.106167
BEM, D. H.; LIMA, D. P. B.; MEDEIROS-JUNIOR, R.A. Effect of chemical admixtures on concrete´s electrical resistivity. International Journal of Building Pathology and Adaptation, Bingley, v. 36, n. 2, p. 174-187,2018. DOI: http://doi.org/10.1108/IJBPA-11-2017-0058. DOI: https://doi.org/10.1108/IJBPA-11-2017-0058
BERRIEL, S. S.; FAVIER, A.; DOMÍNGUEZ, E. R.;MACHADO, I. R. S.; HEIERLI, U.; SCRIVENER, K.; HERNÁNDEZ, F. M.; HABERT, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. Journal of Cleaner Production, Oxford, v. 124, p. 361-369, 2016. DOI: http://dx.doi.org/10.1016/j.jclepro.2016.02.125. DOI: https://doi.org/10.1016/j.jclepro.2016.02.125
BUCHER, R.; DIEDERICH, P.; ESCADEILLAS, G. CYR, M. Service life of metakaolin-based concrete exposed to carbonation - Comparison with blended cement containing fly ash, blast furnance slag and limestone filler. Cement and Concrete Research, Oxford, v. 99, p. 18-29, 2017. DOI: http://doi.org/10.1016/j.cemconres.2017.04.013. DOI: https://doi.org/10.1016/j.cemconres.2017.04.013
CHEN, C. T.; CHANG, J. J.; YEIH, W. C. The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials, Guildford, v. 71, n. 30, p. 35-43, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.009. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.009
CEB - COMITÉ EURO-INTERNATIONAL DU BÉTON. Durable concrete structures. 2. nd. Lausanne: Telford Services, 1992. (Bulletin D' Information, n. 183).
COSTA JUNIOR, M.P.; PINHEIRO, S.M.M. Durabilidade de concreto armado sob condições de carregamento e cura em ambiente marinho. Semina: Ciências Exatas e Tecnológicas, Londrina, , n. 40, v. 2, p. 145-153, 2019. DOI: https://doi.org/10.5433/1679-0375.2019v40n2p145. DOI: https://doi.org/10.5433/1679-0375.2019v40n2p145
DHANDAPANI, Y.; SANTHANAM, M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cement and Concrete Composites, Amsterdam, v. 84, p. 36-47, 2017. DOI: http://dx.doi.org/10.1016/j.cemconcomp.2017.08.012. DOI: https://doi.org/10.1016/j.cemconcomp.2017.08.012
DU, H.; PANG, S.D. High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, Guildford, v. 264, n. 20, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120152. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120152
FERREIRO, S.; HERFORT, D.; DAMTOFT, J. S. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay - Limestone Portland cements. Cement and Concrete Research, Oxford, v. 101, p. 1-12, 2017. DOI: https://doi.org/10.1016/j.cemconres.2017.08.003. DOI: https://doi.org/10.1016/j.cemconres.2017.08.003
HAN, S. H.; PARK, W. S.; YANG, E. I. Evaluation of concrete durability due to carbonation in harbor concrete structures. Construction and Building Materials, Guildford, v. 48, p. 1045-1049, 2013. DOI: http://doi.org/10.1016/j.conbuildmat.2013.07.057. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.057
HORNBOSTEL, K.; LARSEN, C. K.; GEIKER, M. R. Relationship between concrete resistivity and corrosion rate: a literature review. Cement and Concrete Composites, Amsterdam, v. 39, p. 60-72, 2013. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.019. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.019
HOU, T. C.; NGUYEN, V. K.; SU, Y. M.; CHEN, Y. R.; CHEN, P. J. Effects of coarse aggregates on the electrical resistivity of Portland cement concrete. Construction and Building Materials, Guildford, v. 133, n. 15, p. 397-408, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.044. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.044
KHAN, I.; FRANÇOIS, R.; CASTEL, A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cement and Concrete Research, Oxford, v. 56, p. 84-96, 2014. DOI: https://doi.org/10.1016/j.cemconres.2013.11.006. DOI: https://doi.org/10.1016/j.cemconres.2013.11.006
KRISHNAN, S.; BISHNOI, S. A numerical approach for designing composite cements with calcined clay and limestone. Cement and Concrete Research, Oxford, v. 138, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106232. DOI: https://doi.org/10.1016/j.cemconres.2020.106232
MEDEIROS-JUNIOR, R. A.; LIMA, M. G. Electrical resistivity of unsaturated concrete using different types of cement. Construction and Building Materials, Guildford, v. 107, p. 11-16, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.168. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.168
MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: Microstructure, properties and Materials. 3.rd ed. New York: Mc-Graw Hill, 2006.
MURAKAMI, F.F.E.; FERREIRA, E.O.; BALESTRA, C.E.T.; SAVARIS, G. Tensile strength of corroded steel bars. Semina: Ciências Exatas e Tecnológicas. Londrina, v. 42, n.1, p. 103-112, 2021. DOI: https://doi.org/10.5433/1679-0375.2021v42n1p103. DOI: https://doi.org/10.5433/1679-0375.2021v42n1p103
NAIR, N.; HANEEFA, K. M.; SANTHANAM, M.; GETTU, R. A. study on fresh properties of limestone calcined clay blended cementitious systems. Construction and Building Materials, Guildford, v. 254, n. 10, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119326. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119326
NEVILLE, A. M. Properties of Concrete. 5.th ed. New York: Prentice Hall, 2012.
PAUL, S. C.; PANDA, B.; HUANG, Y.; GARG, A.; PENG, X. An empirical model design for evaluation and estimation of carbonation depth in concrete. Measurement, London, v. 124, p. 205-210, 2018. DOI: http://doi.org/10.1016/j.measurement.2018.04.033. DOI: https://doi.org/10.1016/j.measurement.2018.04.033
REHMAN, S.; AL-HADHRAMI, L. M. Web-based national corrosion cost inventory system for Saudi Arabia. Anti Corrosion Methods and Materials, Bingley, v. 61, n. 2, p. 77-92, 2014. DOI: https://doi.org/10.1108/ACMM-04-2013-1254. DOI: https://doi.org/10.1108/ACMM-04-2013-1254
RILEM RECOMMENDATIONS. CPC-18 measurement of hardened concrete carbonation depth. Materials and Structures, Dordrecht, v. 21, p. 453-455, 1988. DOI: https://doi.org/10.1007/BF02472327
RODRIGUEZ, C.; TOBON, J. I. Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance. Construction and Building Materials, Guildford, v. 251, n. 10, p. 1-8, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119050. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119050
SCRIVENER, K.; AVET, F.; MARAQHECHI, H.; ZUNINO, F.; STON, J.; HANPONGPUN, W.; FAVIER, A. Impacting factors and properties of limestone calcined clay cements (LC³). Green Materials, Westminster, v. 7, n. 1, p. 3-14, 2019. DOI: https://doi.org/10.1680/jgrma.18.00029. DOI: https://doi.org/10.1680/jgrma.18.00029
SCRIVENER, K.; MARTIRENA, F.; BISHNOI, S.; MAITY, S. Calcined clay limestone cements (LC³). Cement and Concrete Research, Oxford, v. 114, p. 49-56, 2018. DOI: https://doi.org/10.1016/j.cemconres.2017.08.017. DOI: https://doi.org/10.1016/j.cemconres.2017.08.017
SENGUL, O. Use of electrical resistivity as an indicator for durability. Construction and Building Materials, Guildford, v. 73, n. 30, p. 434-441, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.077. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.077
SHI, C.; HE, T.; ZHANG, G.; WANG, X.; HU, Y. Effects of superplasticizers on carbonation resistance of concrete. Construction and Building Materials, Guildford, v. 108, n. 1, p. 48-55, 2016. DOI: http://doi.org/10.1016/j.conbuildmat.2016.01.037. DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.037
SILVA, R. A.; NEVES, R.; DE BRITO, J.; DHIR, R. K. Carbonation behavior of recycled aggregate concrete. Cement and Concrete Composites, Amsterdam, v. 62, p. 22-32, 2015. DOI: http://doi.org/10.1016/j.cemconcomp.2015.04.017. DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.017
TALUKDAR, S.; BANTHIA, N. Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model. Construction and Building Materials, Guildford, v. 40, p. 775-782, 2013. DOI: http://doi.org/10.1016/j.conbuildmat.2012.11.026. DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.026
YU, B.; LIU, J.; CHEN, Z. Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity. Construction and Building Materials, Guildford, v. 138, n. 1, p. 101-113, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.100. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.100
YU, J.; WU, H. L.; MISHRA, D. K.; LI, G. Compressive strength and environmental impact of sustainable blended cement with high-dosage Limestone and Calcined Clay (LC2). Journal of Cleaner Production, Amsterdam, v. 278, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.123616. DOI: https://doi.org/10.1016/j.jclepro.2020.123616
ZARIBAF, B. H.; UZAL, B.; KURTIS, K. Compatibility of superplasticizers with limestone-metakaolin blended cementitious system. In: SCRIVENER, K.; FAVIER, A. (ed.). Calcined Clays for Sustainable Concrete. Berlim: Springer, 2015. p 427-434. (RILEM Bookseries 10). DOI: http://dx.doi.org/10.1007/978-94-017-9939-3_53. DOI: https://doi.org/10.1007/978-94-017-9939-3_53
ZHANG, D.; JAWORSKA, B.; ZHU, B.; DAHLQUIST, K.; LI, V. C. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3). Cement and Concrete Composites, Amsterdam, v. 114, p. 1-28, 2020. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103766. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103766
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Exatas e Tecnológicas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.