Desenvolvimento e produção de milho em função de doses de biocarvão

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3707

Palavras-chave:

Zea mays L., Crescimento e Produção, Cama de aviário.

Resumo

Biocarvão da cama de aviário tem se mostrado promissor no desenvolvimento e produção de culturas. Dessa forma, o objetivo com esse trabalho foi o de avaliar a influência de doses crescentes de biocarvão de cama de aviário no crescimento e na produção do milho híbrido BRS 2022. O experimento foi conduzido em delineamento inteiramente casualizado, com quatro repetições, sendo seis doses de biocarvão (0; 2,0; 4,0; 6,1; 8,1 e 10,1 t ha-1) e as parcelas constituídas por uma planta por vaso com volume de 20 dm3. Aos 83 dias após a semeadura do milho foram avaliadas as seguintes variáveis: alturas da planta e da inserção da primeira espiga, diâmetro do colmo, número de folhas, área foliar, comprimento e número de internódios, fitomassa seca de colmos, de folhas e total, massa de espiga, de grãos por planta e de 1000 grãos e comprimento e diâmetro de espigas. A aplicação do biocarvão influenciou na altura da planta e da inserção da primeira espiga, diâmetro do colmo, área foliar, comprimento de internódios, fitomassa seca de colmo, de folhas e total, refletindo positivamente no aumento das massas de espiga, de grãos por planta, de 1000 grãos, comprimento e diâmetro de espigas. Para as condições em que o experimento foi conduzido a dose de biocarvão recomendada para obtenção dos melhores resultados é de 6,4 t ha-1.

Downloads

Não há dados estatísticos.

Biografia do Autor

Jacqueline da Silva Mendes, Universidade Federal de Campina Grande

Dra Pesquisadora, Departamento de Engenharia Agronômica, Universidade Federal de Campina Grande, UFCG, Campina Grande, PB, Brasil.

Lucia Helena Garófalo Chaves, Universidade Federal de Campina Grande

Profa Titular, Departamento de Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Josely Dantas Fernandes, Universidade Federal de Campina Grande

Aluna de Pós-Doutorado, Departamento de Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Gilvanise Alves Tito, Universidade Federal de Campina Grande

Aluna de Pós-Doutorado, Departamento de Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Hugo Orlando Carvallo Guerra, Universidade Federal de Campina Grande

Prof. Titular, Departamento de Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Laysa Gabryella de Souza Laurentino, Universidade Federal de Campina Grande

Aluna do Programa de Pós-Graduação em Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Gustavo Tomio Magalhães Kubo, Universidade Federal de Campina Grande

Aluna do Programa de Pós-Graduação em Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Edilma Rodrigues Bento Dantas, Universidade Federal de Campina Grande

Dra. Pesquisadora, Departamento de Engenharia Civil, UFCG, Campina Grande, PB, Brasil.

Yuri Santos Silva, Universidade Federal de Campina Grande

Aluno do Programa de Pós-Graduação em Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Luan Dantas de Oliveira, Universidade Federal de Campina Grande

Aluno do Programa de Pós-Graduação em Engenharia Agronômica, UFCG, Campina Grande, PB, Brasil.

Referências

Agboola, K., & Moses, S. A. (2015). Effect of biochar and cow dung on nodulation, growth, and yield of soybean (Glycine max l. Merrill). International Journal of Agriculture and Biosciences, 4(4), 154-160. http://www.ijagbio.com/pdf-files/volume-4-no-4-2015/154-160.pdf

Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202-214. doi: 10.1111/gcbb.12037

Brito, A. R., Pereira, H. S., & Brachtvogel, E. L. (2019). Saturação por bases na integração lavoura-pecuária com cultivo de milho nos dois primeiros anos. Colloquium Agrariae, 15(3), 58-68. doi: 10.5747/ca. 2019.v15.n3.a299

Chaves, L. H. G., Fernandes, J. D., Dantas, E. R. B., Guerra, H. C., Tito, G. A., Silva, A. A. R.,... Chaves, I. B. (2020). Characterization of poultry litter biochar for agricultural use. Sylwan, 164(6), 468-487.

Fabrini, D. F., Silva, M. C. P., & Rezende, C. F. A. (2021). Development and productivity of maize submitted to the nitrogen installment in coverage. Ipê Agronomic Journal, 5(1), 1-9. doi: 10.37951/259 5-6906.2021v5i1.6524

Fagbenro, J. A., Oshunsanya, S. O., & Onawumi, O. A. (2013). Effect of saw dust biochar and NPK 15:15:15 inorganic fertilizer on Moringa oleifera seedlings grown in an Oxisol. Agrosearch, 13(1), 57-68. doi: 10.4314/agrosh.v13i1.6

Faloyea, O. T., Alatise, M. O., Ajayi, A. E., & Ewulo, B. S. (2017). Synergistic effects of biochar and inorganic fertiliser on maize (Zea mays) yield in an Alfisol under drip irrigation. Soil and Tillage Research, 174(10), 214-220. doi: 10.1016/j.still.2017.07.013

Fernandes, B. C. C., Mendes, K. F., Dias, A. F., Jr., Caldeira, V. P. S., Teófilo, T. M. S., Silva, T. S.,... Silva, D. V. (2020). Impact of pyrolysis temperature on the properties of eucalyptus wood-derived biochar. Materials, 13(24), 1-13. doi: 10.3390/ma13245841

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência Agronômica, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001

Freitas, W. S., Oliveira, R. A., Pinto, F. A., Cecon, P. R., & Galvão, J. C. C. (2004). Efeito da aplicação de águas residuárias de suinocultura sobre a produção do milho para silagem. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(1), 120-125. doi: 10.1590/S1415-43662004000100018

Furtado, G. F., & Chaves, L. H. G. (2018). Growth rates and sunflower production in function of fertilization with biochar and NPK. Journal of Agricultural Science, 10(2), 260-270. doi: 10.5539/jas.v10n2p260

Islam, J. S. M., Mannan, M. A., Khaliq, Q. A., & Rahman, M. M. (2018). Growth and yield response of maize to rice husk biochar. Australian Journal of Crop Science, 12(12), 1813-1819. doi: 10.21475/ajcs. 18.12.12p944

Islami, T., Kurniawan, S., & Utomo, W. H. (2013). Yield stability of Cassava (Manihot esculenta Crantz) planted in intercropping system after 3 years of biochar application. American Eurasian Journal of Sustainable Agriculture, 7(4), 306-312.

Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions-A meta-analysis of literature data. Plant and Soil, 373, 583-594. doi: 10.1007/s11104-013-1806-x

Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to Colombian savanna oxisol. Plant and Soil, 333, 117-128. doi: 10. 1007/s11104-010-0327-0

Masud, M. M., Abdulaha-AlBaquy, M., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202(1), 1-10. doi: 10.1016/j.ecoenv.2020.110865

Mendes, J. S., Fernandes, J. D., Chaves, L. H. G., Guerra, H. O. C., Tito, G. A., & Chaves, I. B. (2021). Chemical and physical changes of soil amended with biochar. Water Air, & Soil Pollution, 232(8), 1-13. doi: 10.1007/s11270-021-05289-8

Neves, A. L. A., Santos, R. D., Pereira, L. G. R., Tabosa, J. N., Albuquerque, I. R. R., Neves, A. L. A.,... Verneque, R. S. (2015). Agronomic characteristics of corn cultivars for silage production. Semina: Ciências Agrárias, 36(3), 1799-1806. doi: 10.5433/1679-0359.2015v36n3Supl1p1799

Pacheco, C. A. P., Parentoni, S., Netto, Guimarães, P. E. O., Gama, E. E. G., Meirelles, W. F., Ferreira, A. S.,... Costa, R. V. (2009). BRS 2022: híbrido duplo de milho. Sete Lagoas, MG: EMBRAPA Milho e Sorgo.

Pissinati, A., Oliveira, M. A., Pissinati, A., & Moreira, A. (2013). Management and cost of urea application in maize grown in northern Paraná state, Brazil. Revista de Ciências Agrárias, 56(3), 235-241. doi: 10. 4322/rca.2013.034

Revell, K. T., Maguire, R. O., & Agblevor, F. A. (2012). Influence of poultry litter biochar on soil properties and plant growth. Soil Science, 177(6), 402-408. doi: 10.1097/SS.0b013e3182564202

Robertson, D. J., Lee, S. Y., Julias, M., & Cook, D. D. (2016). Maize stalk lodging: flexural stiness predicts strength. Crop Science, 56(4), 1711-1718. doi: 10.2135/cropsci2015.11.0665

Saldanha, E. C. M., Rocha, M. E. L., Araújo, J. L. S., & Alves, J. D. N. (2017). Adubação fosfatada na cultura do milho no nordeste paraense. Revista de Ciências Agroveterinárias, 16(4), 441-448. doi: 10. 5965/223811711642017441

Shashi, M. A., Mannan, M. A., Islam, M. M., & Rahman, M. M. (2018). Impact of rice husk biochar on growth, water relations and yield of maize (Zea mays L.) under drought condition. The Agriculturists, 16(2), 93-101. doi: 10.3329/agric.v16i02.40347

Situmeang, Y. P., Adnyana, I. M., Subadiyasa, I. N. N., & Merit, I. N. (2015). Effect of dose biochar bamboo, compost, and phonska on growth of maize (Zea mays L.) in Dryland. International Journal on Advanced Science, Engineering and Information Technology, 5(6), 433-439. doi: 10.18517/ijaseit.5.6.6 09

Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G., & Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869-882. doi: 10.1016/j.chemosphere.2011.06.108

Takasu, A. T., Rodrigues, R. A. F., Goes, R. J., & Kaneko, F. H. (2019). Interceptação da radiação solar e área foliar do milho influenciada pelo arranjo espacial de plantas. In R. R. S. Silva-Matos, N. A. F. Machado, & M. R. L. Leite (Orgs.), Desafios e perspectivas do plantio direto (pp. 28-37). Ponta Grossa, PR: Atena.

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3a ed. rev. e ampl.). Brasília, DF: EMBRAPA.

Tito, G. A., Fernandes, J. D., Chaves, L. H. G., Guerra, H. O. C., & Dantas, E. R. B. (2021). Organic carbon mineralization of the biochar and organic compost of poultry litter in an Argisol. Semina: Ciências Agrárias, 42(6), 3167-3184. doi: 10.5433/1679-0359.2021v42n6p3167

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperatureand feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(3), 191-215. doi: 10.1007/s11157-020-09523-3

Downloads

Publicado

2021-10-08

Como Citar

Mendes, J. da S., Garófalo Chaves, L. H., Fernandes, J. D., Tito, G. A., Guerra, H. O. C., Laurentino, L. G. de S., … Oliveira, L. D. de. (2021). Desenvolvimento e produção de milho em função de doses de biocarvão. Semina: Ciências Agrárias, 42(6SUPL2), 3707–3720. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3707

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

1 2 3 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.