Soil microbiological attributes and sugarcane productivity following implementation of three sugarcane reformation systems

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n6p1823

Keywords:

sandy Ultisol, Saccharum officinarum L, microbial biomass carbon, glomalin, stalk productivity

Abstract

The increasing demand for biofuels has driven the Brazilian sugarcane industry to expand into degraded pasture areas with low organic matter content and fertility. Traditionally, sugarcane is cultivated in sandy soils, and after five or more harvest cycles, field reform involves conventional tillage, followed by sugarcane planting in the exposed soil. However, the introduction of cover crops during this reform period has shown soil fertility benefits, although research on soil microbiology impacts is limited. This study aimed to evaluate soil microbiological attributes and sugarcane productivity following the implementation of three different reform systems in a sandy Ultisol. The three systems assessed were conventional planting in exposed soil and field reform using either soybean or Crotalaria spectabilis. Ten samples were randomly collected from a 10-hectare plot at a depth of 0.00–0.10 m, near the planting furrow, for each management system. The samples were analyzed for organic carbon, microbial biomass carbon, total glomalin, easily extractable glomalin, and sugarcane productivity. Data were subjected to an analysis of variance and means were compared using Tukey’s test. The findings indicate that cultivating C. spectabilis before planting sugarcane enhances soil health and mitigates the impacts of agricultural practices. This improvement is attributed to higher levels of microbial biomass carbon, easily extractable glomalin, and total glomalin, which contribute to increased sugarcane productivity.

Downloads

Download data is not yet available.

Author Biographies

Gabriela Moraes de Oliveira, Universidade Estadual de Londrina

Agronomist, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Lucas Augusto de Assis Moraes, Mosaic Brasil

Dr., Agronomist, Mosaic Brasil, Londrina, PR, Brazil.

Adriana Pereira da Silva, Rizobacter

Dra., Agronomist, Rizobacter, Londrina, PR, Brazil.

Gabriela Silva Machineski, Universidade Estadual de Londrina

Profa. Dra., Department of Agronomy, UEL, Londrina, PR, Brazil.

Francieli de Fátima Missio, Universidade Estadual de Londrina

Profa. Dra., Department of Agronomy, UEL, Londrina, PR, Brazil.

João Tavares Filho, Universidade Estadual de Londrina

Prof. Dr., Department of Agronomy, UEL, Londrina, PR, Brazil.

References

Babujia, L. C., Hungria, M., Franchini, J. C., & Brookes, P. C. (2010). Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biology & Biochemistry, 42(12), 2174-2181. doi: 10.1016/j.soilbio.2010.08.013 DOI: https://doi.org/10.1016/j.soilbio.2010.08.013

Barbosa, I. R., Santana, R. S., Mauad, M., & Garcia, R. A. (2020). Dry matter production and nitrogen, phosphorus and potassium uptake in Crotalaria juncea and Crotalaria spectabilis. Pesquisa Agropecuária Tropical, 50(2020), e61011. doi: 10.1590/1983-40632020v5061011 DOI: https://doi.org/10.1590/1983-40632020v5061011

Bartlett, R. J., & Ross, D. N. (1988). Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Science Society of America Journal, 52(4), 1191-1192. doi: 10.2136/sssaj1988.03615995005200040 055x DOI: https://doi.org/10.2136/sssaj1988.03615995005200040055x

Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1006/abio.1976.9999

Cagnini, C. Z., Garcia, D. M., Silva, N. S., Macedo, E. C., Hülse de Souza, S. G., Silva, A. P., & Colauto, N. B. (2019). Cover crop and deep tillage on sandstone soil structure and microbial biomass. Archives of Agronomy and Soil Science, 65(7), 980-993, doi: 10.1080/03650340.2018.1542684 DOI: https://doi.org/10.1080/03650340.2018.1542684

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196(2015), 15-27. doi: 10.1016/j.scienta.2015.09.013 DOI: https://doi.org/10.1016/j.scienta.2015.09.013

Companhia Nacional de Abastecimento (2024). Produção de cana-de-açúcar na safra 2023/24 chega a 713,2 milhões de toneladas, a maior da série histórica. CONAB. https://www.conab.gov.br/ultimas-noticias/5489-producao-de-cana-de-acucar-na-safra-2023-24-chega-a-713-2-milhoes-de-toneladas-a-maior-da-serie-historica

Fontana, A., & Campos, D. V. (2017). Carbono orgânico. In P. C. Teixeira, G. K. Donagemma, A. Fontana, & W. G. Teixeira (Eds.), Manual de métodos de análise de solo (3a ed. rev e ampl., pp. 360-367). Brasília.

Garcia, D. M., Silva, C. G., Lansa, V. R., Nery, E. M., Silva, N. S., Alberton, O., Colauto, N. B., & Silva, A. P. (2020). Structural soil quality related to microbiological parameters in sugarcane. Anais da Academia Brasileira de Ciências, 92(Suppl. 1), 1-16. doi: 10.1590/0001-3765202020190450 DOI: https://doi.org/10.1590/0001-3765202020190450

Hurisso, T. T., Davis, J. G., Brummer, J. E., Stromberger, M. E., Mikha, M. M., Haddix, M. L., Booher, M. R., & Paul, E. A. (2013). Rapid changes in microbial biomass and aggregate size distribution in response to changes in organic matter management in grass pasture. Geoderma, 193-194(2013), 68-75. doi: 10. 1016/j.geoderma.2012.10.016 DOI: https://doi.org/10.1016/j.geoderma.2012.10.016

Marshall, C. B., & Lynch, D. H. (2020). Soil microbial and macrofauna dynamics under different green manure termination methods. Applied Soil Ecology, 148(2020), 103505. doi: 10.1016/j.apsoil.2020.103505 DOI: https://doi.org/10.1016/j.apsoil.2020.103505

Moraes, L. A. A., Melo, T. R., & Tavares, J., Fº. (2023). Impact of sugarcane reform system in sandy soils on organic carbon and soil chemical attributes. Sugar Tech, 25(2023), 1271-1274. doi: 10.1007/s12355-023-01268-x DOI: https://doi.org/10.1007/s12355-023-01268-x

Moraes, L. A. A., Tavares, J., Fº., & Melo T. R. (2022). Different managements in conventional sugarcane reform in sandy soils: effects on physical properties and soil organic carbon. Revista Brasileira de Ciência do Solo, 46(2022), e0220017. doi: 10.36783/18069657rbcs20220017 DOI: https://doi.org/10.36783/18069657rbcs20220017

Oliveira, D. M. S., Cherubin, M. R., Franco, A. L. C., Santos, A. S., Gelain, J. G., Dias, N. M. S., Diniz, T. R., Almeida, A. N., Feigl, B. J., Davies, C. A., Paustian, K., Karlen, D. L., Smith, P., Cerri, C. C., & Cerri, C. E. P. (2019). Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil's bioenergy industry? Renewable & Sustainable Energy Reviews, 102(2019), 346-355. doi: 10.1016/j rser. 2018.12.012 DOI: https://doi.org/10.1016/j.rser.2018.12.012

Perin, A., Santos, R. H. S., Caballero, S. S. U., Guerra, J. G. M., & Gusmão, L. A. (2010). Acúmulo e liberação de P, K, Ca e Mg em crotalária e milheto solteiros e consorciados. Revista Ceres, 57(2), 274-281. doi: 10. 1590/S0034-737X2010000200020 DOI: https://doi.org/10.1590/S0034-737X2010000200020

R Core Team (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing.

Rillig, M. C. (2004). Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 84(4), 355-363. doi: 10.4141/S04-003 DOI: https://doi.org/10.4141/S04-003

Silva, A. P., Babujia, L. C., Franchini, J. C., Ralisch, R., Hungria, M., & Guimarães, M. F. (2014). Soil structure and its influence on microbial biomass in different soil and crop management systems. Soil and Tillage Research, 142(5), 42-53. doi: 10.1016/j.still.2014.04.006 DOI: https://doi.org/10.1016/j.still.2014.04.006

Silva, C. F., Pereira, M. P., Miguel, D. L., Feitora, J. C. F., Loss, A., Menezes, C. E. G., & Silva, E. M. R. (2012). Carbono orgânico total, biomassa microbiana e atividade enzimática do solo de áreas agrícolas, florestais e pastagem no médio Vale do Paraíba do Sul (RJ). Revista Brasileira de Ciência do Solo, 36(6), 1680-1689. doi: 10.1590/S0100-06832012000600002 DOI: https://doi.org/10.1590/S0100-06832012000600002

Sousa, C. S., Menezes, R. S. C., Sampaio, E. V. S. B., & Lima, F. S. (2012). Glomalina: características, produção, limitações e contribuição nos solos. Semina: Ciências Agrárias, 33(Suppl. 1), 3033-3044. doi: 10.5433/1679-0359.2012v33Supl1p3033 DOI: https://doi.org/10.5433/1679-0359.2012v33Supl1p3033

Zhao, L., Zhang, K., Sun, X., & He, X. (2022). Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Gymnocarpos przewalskii in Northwest Desert, China. Applied Soil Ecology, 170(2022), 104251. doi: 10.1016/j.apsoil.2021.104251 DOI: https://doi.org/10.1016/j.apsoil.2021.104251

Downloads

Published

2024-11-22

How to Cite

Oliveira, G. M. de, Moraes, L. A. de A., Silva, A. P. da, Machineski, G. S., Missio, F. de F., & Tavares Filho, J. (2024). Soil microbiological attributes and sugarcane productivity following implementation of three sugarcane reformation systems. Semina: Ciências Agrárias, 45(6), 1823–1832. https://doi.org/10.5433/1679-0359.2024v45n6p1823

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.