Acidifiers and prebiotics in the diets of nursery-stage piglets as alternatives to antibiotic growth promoters

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n5p2221

Keywords:

antimicrobial replacement, colistin, feed additives, intestinal health, performance

Abstract

The objective of this study was to evaluate the performance and intestinal health of nursery-phase piglets (22 to 64 days of age) fed a diet supplemented with organic acids and prebiotics or a diet supplemented with colistin. One hundred fifty weaned piglets 22 days old and with an initial weight of 5.56 kg were allotted to pens based on BW in a completely randomized block design to one of three treatment diets: T1, negative control; T2, colistin (10 mg/kg); and T3, mannan oligosaccharides + beta-glucans + ammonium formate, formic acid, ammonium propionate and acetic acid (1 kg/ton). The daily feed intake, daily weight gain, feed conversion, diarrhea score, cecal Lactobacillus, E. coli and fecal coliform content, and proinflammatory and anti-inflammatory cytokine concentrations were evaluated. The performance results considering the whole nursery phase showed a better (P < 0.05) feed conversion for T3 (1.593) and T2 (1.602) compared with T1 (1.679). The diarrhea score of T2 was lower than that of T1 (P < 0.05) and similar to that of T3 (P ≥ 0.05). The piglets that received T3 presented a greater concentration of proinflammatory cytokines at 36 days of age than T1, similar to T2 (p < 0.05), with the exception of TNFa, where T3 was superior to all groups, whereas at 57 days of age the piglets that received T2 presented a greater concentration of inflammatory cytokines. The piglets fed diets supplemented with a combination of mannan oligosaccharides, beta-glucans and acidifiers, representing an alternative to growth-promoting antibiotics, performed similarly to those fed colistin-supplemented diets.

Downloads

Download data is not yet available.

Author Biographies

Eduardo Miotto Ternus, Vetanco S.A.

Veterinary, Vetanco Brasil, VETANCO, Chapecó, SC, Brazil.

Lucas Piroca, Vetanco S.A.

Veterinary, Vetanco Brasil, VETANCO, Chapecó, SC, Brazil.

Fabrízio Matté, Vetanco S.A.

Veterinary, Vetanco Brasil, VETANCO, Chapecó, SC, Brazil.

Cleandro Pazinato Dias, Akei Animal Research

Researcher, Akei Animal Research, AKEI, Fartura, SP, Brazil.

Marco Aurélio Callegari, Akei Animal Research

Researcher, Akei Animal Research, AKEI, Fartura, SP, Brazil.

José Cristani, Universidade do Estado de Santa Catarina

Prof. Dr., Department of Veterinary Medicine, Universidade Estadual de Santa Catarina, IDESC, Lages, SC, Brazil.

Sandra Davi Traverso, Universidade do Estado de Santa Catarina

Profa. Dra., Department of Veterinary Medicine, Universidade Estadual de Santa Catarina, IDESC, Lages, SC, Brazil.

Rafael Humberto Carvalho, Universidade Estadual de Londrina

Prof. Dr., Department of Zootechnology, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Caio Abércio da Silva, Universidade Estadual de Londrina

Prof. Dr., Department of Zootechnology, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

References

Bourgot, C. Le, Ferret-Bernard, S., Normand, L. Le, Savary, G., Menendez-Aparicio, E., Blat, S., Appert-Bossard, E., Respondek, F., & Le Huërou-Luron, I. (2014). Maternal short-chain fructooligosaccharide supplementation influences intestinal immune system maturation in piglets. PLoS ONE, 9(9), 1-12. doi: 10.1371/journal.pone.0107508 DOI: https://doi.org/10.1371/journal.pone.0107508

Instrução Normativa nº 62, de 26 de agosto de 2003. Oficializa os Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Diário Oficial da União, Brasília, 26 ago. 2003, Seção 1, p. 14.

Braz, D. B., Costa, L. B., Berenchtein, B., Tse, M. L. P., Almeida, V. V., & Miyada, V. S. (2011). Acidificantes como alternativa aos antimicrobianos promotores do crescimento de leitões. Archivos de Zootecnia, 60(231), 745-756. doi: 10.4321/S0004-05922011000300062 DOI: https://doi.org/10.4321/S0004-05922011000300062

Brown, G. D., & Gordon, S. (2003). Fungal β-glucans and mammalian immunity. Immunity, 19(3), 311-315. doi: 10.1016/S1074-7613(03)00233-4 DOI: https://doi.org/10.1016/S1074-7613(03)00233-4

Callegari, M. A., Novais, A. K., Oliveira, E. R., Dias, C. P., Schmoller, D. L., Pereira, M., Dário, J. G. N., Alves, J. B., & Silva, C. A. da. (2016). Microencapsulated acids associated with essential oils and acid salts for piglets in the nursery phase. Semina: Ciências Agrárias, 37(4), 2193-2208. doi: 10.5433/1679-0359.2016v37n4p2193 DOI: https://doi.org/10.5433/1679-0359.2016v37n4p2193

Chen, J. L., Zheng, P., Zhang, C., Yu, B., He, J., Yu, J., Luo, J. Q., Mao, X. B., Huang, Z. Q., & Chen, D. W. (2017). Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression. Journal of Animal Physiology and Animal Nutrition, 101(6), 1137-1146. doi: 10.1111/jpn.12627 DOI: https://doi.org/10.1111/jpn.12627

Corassa, A., Lopes, D. C., Ostermann, J. D., Sanfelice, A. M., Teixeira, A. de O., Silva, G. F. da, & Pena, S. de M. (2006). Níveis de ácido fólico em dietas contendo ácido fórmico para leitões de 21 a 48 dias de idade. Revista Brasileira de Zootecnia, 35(2), 462-470. doi: 10.1590/S1516-35982006000200018 DOI: https://doi.org/10.1590/S1516-35982006000200018

Dahmer, P. L., & Jones, C. K. (2021). Evaluating dietary acidifiers as alternatives for conventional feed-based antibiotics in nursery pig diets. Translational Animal Science, 5(2), txab040. doi: 10.1093/tas/txab040 DOI: https://doi.org/10.1093/tas/txab040

COUNCIL OF THE EUROPEAN UNION. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs (Codified version). Official Journal of the European Union, n.L 47, 18 fev. 2009.

Fairbrother, J. M., & Nadeau, É. (2019). Colibacillosis. In: Zimmerman, J. J., Karriker, L. A., Schwartz, K. J., Stevenson, G. W., & Zhang, J. Diseases of swine (pp. 807-834). Hoboken, USA: John Wiley & Sons, Ltd. DOI: https://doi.org/10.1002/9781119350927.ch52

Freitas, L. S. de, Lopes, D. C., Freitas, A. F. de, Carneiro, J. da C., Corassa, A., Pena, S. de M., & Costa, L. F. (2006). Avaliação de ácidos orgânicos em dietas para leitões de 21 a 49 dias de idade. Revista Brasileira de Zootecnia, 35(4 Suppl.), 1711-1719. doi: 10.1590/S1516-35982006000600019 DOI: https://doi.org/10.1590/S1516-35982006000600019

Huting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1-37. doi: 10.3390/ani11020402 DOI: https://doi.org/10.3390/ani11020402

Hutkins, R. W., Krumbeck, J. A., Bindels, L. B., Cani, P. D., Fahey, G., Goh, Y. J., Hamaker, B., Martens, E. C., Mills, D. A., Rastal, R. A., Vaughan, E., & Sanders, M. E. (2016). Prebiotics: why definitions matter. Current Opinion in Biotechnology, 37(2), 1-7. doi: 10.1016/J.COPBIO.2015.09.001 DOI: https://doi.org/10.1016/j.copbio.2015.09.001

Jayaraman, B., & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: a review. Animal Nutrition, 3(3), 205-211. doi: 10.1016/j.aninu.2017.06.002 DOI: https://doi.org/10.1016/j.aninu.2017.06.002

Khanna, T., Friendship, R., Dewey, C., & Weese, J. S. (2008). Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Veterinary Microbiology, 128(3-4), 298-303. doi: 10.1016/J. VETMIC.2007.10.006 DOI: https://doi.org/10.1016/j.vetmic.2007.10.006

Lee, S. I., Kim, J. K., Hancock, J. D., & Kim, I. H. (2017). Β-glucan from mulberry leaves and curcuma can improve growth performance and nutrient digestibility in early weaned pigs. Journal of Applied Animal Research, 45(1), 209-214. doi: 10.1080/09712119.2016.1141775 DOI: https://doi.org/10.1080/09712119.2016.1141775

Lei, X. J., Park, J. W., Baek, D. H., Kim, J. K., & Kim, I. H. (2017). Feeding the blend of organic acids and medium chain fatty acids reduces the diarrhea in piglets orally challenged with enterotoxigenic Escherichia coli K88. Animal Feed Science and Technology, 224(1), 46-51. doi: 10.1016/J. ANIFEEDSCI .2016.11.016 DOI: https://doi.org/10.1016/j.anifeedsci.2016.11.016

Lekagul, A., Tangcharoensathien, V., & Yeung, S. (2019). Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science, 7(6), 100058. doi: 10.1016/j.vas.2019.100058 DOI: https://doi.org/10.1016/j.vas.2019.100058

Li, J. (2017). Current status and prospects for in-feed antibiotics in the different stages of pork production - a review. Asian-Australasian Journal of Animal Sciences, 30(12), 1667-1673. doi: 10.5713/ajas.17.0418 DOI: https://doi.org/10.5713/ajas.17.0418

Liu, X., Xia, B., He, T., Li, D., Su, J.-H., Guo, L., Wang, J., & Zhu, Y.-H. (2019). Oral administration of a select mixture of Lactobacillus and Bacillus alleviates inflammation and maintains mucosal barrier integrity in the ileum of pigs challenged with Salmonella infantis. Microorganisms, 7(5), 1-14. doi: 10. 3390/microorganisms7050135 DOI: https://doi.org/10.3390/microorganisms7050135

Luise, D., Motta, V., Salvarani, C., Chiappelli, M., Fusco, L., Bertocchi, M., Mazzoni, M., Maiorano, G., Costa, L. N., Van Milgen, J., Bosi, P., & Trevisi, P. (2017). Long-term administration of formic acid to weaners: influence on intestinal microbiota, immunity parameters and growth performance. Animal Feed Science and Technology, 232(10), 160-168. doi: 10.1016/J.ANIFEEDSCI.2017.06.015 DOI: https://doi.org/10.1016/j.anifeedsci.2017.06.015

Luna, U. V., Caramori, J. G., Jr., Corrêa, G. S. S., Kiefer, C., Souza, M. A., Vieites, F. M., Cruz, R. A. S., & Assis, S. D. (2015). Mananoligossacarídeo e ß-glucano em dietas de leitões desmamados. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67(2), 591-599. doi: 10.1590/1678-7146 DOI: https://doi.org/10.1590/1678-7146

Mevius, D., Wit, B., Pelt, W., Puister-Jansen, L. F., Bondt, N., Bergevoet, R. H. M., & Van Geijlswijk, I. (2009). MARAN 2007: monitoring of antimicrobial resistance and antibiotic usage in animals in the Netherlands in 2006/2007.

Moeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313-321. doi: 10.1016/j.aninu.2017. 06.003 DOI: https://doi.org/10.1016/j.aninu.2017.06.003

Naqid, I. A., Owen, J. P., Maddison, B. C., Gardner, D. S., Foster, N., Tchórzewska, M. A., La Ragione, R. M., & Gough, K. C. (2015). Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Animal Feed Science and Technology, 201(12), 57-65. doi: 10.1016/J.ANIFEEDSCI.2014.12.005 DOI: https://doi.org/10.1016/j.anifeedsci.2014.12.005

Nordgreen, J., Edwards, S. A., Boyle, L. A., Bolhuis, J. E., Veit, C., Sayyari, A., Marin, D. E., Dimitrov, I., Janczak, A. M., & Valros, A. (2020). A proposed role for pro-inflammatory cytokines in damaging behavior in pigs. Frontiers in Veterinary Science, 7(10), 1-15. doi: 10.3389/fvets.2020.00646 DOI: https://doi.org/10.3389/fvets.2020.00646

Novais, A. K., Deschêne, K., Martel-Kennes, Y., Roy, C., Laforest, J. P., Lessard, M., Matte, J. J., & Lapointe, J. (2021). Weaning differentially affects mitochondrial function, oxidative stress, inflammation and apoptosis in normal and low birth weight piglets. PLoS ONE, 16(2021), 1-21. doi: 10.1371/journal.pone. 0247188 DOI: https://doi.org/10.1371/journal.pone.0247188

Papadopoulos, G. A., Poutahidis, T., Tallarico, N., Hardas, A., Teliousis, K., Arsenos, G., & Fortomaris, P. D. (2017). Dietary supplementation of encapsulated organic acids enhances performance and modulates immune regulation and morphology of jejunal mucosa in piglets. Research in Veterinary Science, 115(4), 174-182. doi: 10.1016/J.RVSC.2017.04.014 DOI: https://doi.org/10.1016/j.rvsc.2017.04.014

Park, J.-H., Lee, S.-I., & Kim, I.-H. (2018). Effect of dietary β-glucan supplementation on growth performance, nutrient digestibility, and characteristics of feces in weaned pigs. Journal of Applied Animal Research, 46(1), 1193-1197. doi: 10.1080/09712119.2018.1481855 DOI: https://doi.org/10.1080/09712119.2018.1481855

Pié, S., Lallès, J. P., Blazy, F., Laffitte, J., Sève, B., & Oswald, I. P. (2004). Weaning is associated with an upregulation of expression of inflamatory cytokines in the intestine of piglets. Journal of Nutrition, 134(3), 641-647. doi: 10.1093/jn/134.3.641 DOI: https://doi.org/10.1093/jn/134.3.641

Roth, F., & Kirchgessner, M. (1998). Organic acids as feed additives for young pigs: nutritional and gastrointestinal effects. Journal of Animal and Feed Sciences, 7(Suppl. 1), 25-33. doi: 10.22358/jafs/ 69953/1998 DOI: https://doi.org/10.22358/jafs/69953/1998

Rymut, H. E., Rund, L. A., Bolt, C. R., Villamil, M. B., Southey, B. R., Johnson, R. W., & Rodriguez-Zas, S. L. (2021). The combined effect of weaning stress and immune activation during pig gestation on serum cytokine and analyte concentrations. Animals, 11(8), 1-20. doi: 10.3390/ani11082274 DOI: https://doi.org/10.3390/ani11082274

Shang, W., Si, X., Zhou, Z., Li, Y., Strappe, P., & Blanchard, C. (2017). Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food and Function, 8(12), 4374-4383. doi: 10.1039/C7F O01244F DOI: https://doi.org/10.1039/C7FO01244F

Sido, A., Radhakrishnan, S., Kim, S. W., Eriksson, E., Shen, F., Li, Q., Bhat, V., Reddivari, L., & Vanamala, J. K. P. (2017). A food-based approach that targets interleukin-6, a key regulator of chronic intestinal inflammation and colon carcinogenesis. Journal of Nutritional Biochemistry, 43(7), 11-17. doi: 10.1016/j. jnutbio.2017.01.012 DOI: https://doi.org/10.1016/j.jnutbio.2017.01.012

Suiryanrayna, M. V. A. N., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1-11. doi: 10.1186/s40104-015-0042-z DOI: https://doi.org/10.1186/s40104-015-0042-z

Tester, R., & Al-Ghazzewi, F. (2017). Glucomannans and nutrition. Food Hydrocolloids, 68(7), 246-254. doi: 10.1016/J.FOODHYD.2016.05.017 DOI: https://doi.org/10.1016/j.foodhyd.2016.05.017

Tsiloyiannis, V., Kyriakis, S., Vlemmas, J., & Sarris, K. (2001). The effect of organic acids on the control of porcine post-weaning diarrhea. Research in Veterinary Science, 70(3), 287-293. doi: 10.1053/rvsc.2001. 0476 DOI: https://doi.org/10.1053/rvsc.2001.0476

Vieira, M. D. S., Dadalt, J. C., Ribeiro, A. M. L., & Almeida, T. W. de. (2017). Mannan-oligosaccharide and organic acids for weaned piglets. Semina: Ciências Agrárias, 38(4), 2789-2802. doi: 10.5433/1679-0359.2017v38n4Supl1p2789 DOI: https://doi.org/10.5433/1679-0359.2017v38n4Supl1p2789

Vondruskova, H., Slamova, R., Trckova, M., Zraly, Z., & Pavlik, I. (2010). Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Veterinarni Medicina, 55(5), 199-224. doi: 10.17221/2998-VETMED DOI: https://doi.org/10.17221/2998-VETMED

Wensley, M. R., Tokach, M. D., Woodworth, J. C., Goodband, R. D., Gebhardt, J. T., DeRouchey, J. M., & McKilligan, D. (2021). Maintaining continuity of nutrient intake after weaning. II. Review of post-weaning strategies. Translational Animal Science, 5(1), 1-16. doi: 10.1093/tas/txab022 DOI: https://doi.org/10.1093/tas/txab022

Wu, F., Vierck, K. R., DeRouchey, J. M., O’Quinn, T. G., Tokach, M. D., Goodband, R. D., Dritz, S. S., & Woodworth, J. C. (2017). A review of heavy weight market pigs: status of knowledge and future needs assessment. Translational Animal Science, 1(1), 1-15. doi: 10.2527/tas2016.0004 DOI: https://doi.org/10.2527/tas2016.0004

Yu, K., Canalias, F., Solà-Oriol, D., Arroyo, L., Pato, R., Saco, Y., Terré, M., & Bassols, A. (2019). Age-related serum biochemical reference intervals established for unweaned calves and piglets in the post-weaning period. Frontiers in Veterinary Science, 6(4), 1-12. doi: 10.3389/fvets.2019.00123 DOI: https://doi.org/10.3389/fvets.2019.00123

Zenhom, M., Hyder, A., Vrese, M. de, Heller, K. J., Roeder, T., & Schrezenmeir, J. (2011). Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3. The Journal of Nutrition, 141(5), 971-977. doi: 10.3945/jn.110. 136176 DOI: https://doi.org/10.3945/jn.110.136176

Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal health of pigs upon weaning: challenges and nutritional intervention. Frontiers in Veterinary Science, 8(2), 1-18. doi: 10.3389/fvets. 2021.628258 DOI: https://doi.org/10.3389/fvets.2021.628258

Downloads

Published

2022-11-07

How to Cite

Ternus, E. M., Piroca, L., Matté, F., Dias, C. P., Callegari, M. A., Oliveira, E. R., … Silva, C. A. da. (2022). Acidifiers and prebiotics in the diets of nursery-stage piglets as alternatives to antibiotic growth promoters. Semina: Ciências Agrárias, 43(5), 2221–2236. https://doi.org/10.5433/1679-0359.2022v43n5p2221

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >> 

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.