Physiology and production components of cotton plants under salt stress and salicylic acid application

Authors

DOI:

https://doi.org/10.5433/1679-0359.2023v44n1p147

Keywords:

Gossypium hirsutum L., Plant hormone, Salt stress.

Abstract

The use of saline waters in irrigated agriculture has become a reality in several regions of the world. However, this practice may cause limitations to growth and development, depending on the tolerance level of the crop. Applying strategies that minimize salt stress in crops is therefore essential, and, in this respect, salicylic acid can act as an antioxidant and enhance the plant’s tolerance to salt stress. The objective of this study was to examine the effects of foliar application of salicylic acid on the physiology and production components of naturally colored cotton cv. BRS Jade grown under salt stress. The plants were cultivated on lysimeters in outdoor conditions at the Agro-Food Science and Technology Center, Federal University of Campina Grande, located in Pombal - PB, Brazil. The experiment was laid out in a randomized block design with a 5 × 5 factorial arrangement consisting of five irrigation-water electrical conductivity levels (ECw: 0.3, 1.8, 3.3, 4.8, and 6.3 dS m-1) and five concentrations of salicylic acid (SA: 0, 1.5, 3.0, 4.5, and 6.0 mM), with three replicates. Irrigation with water with salinity levels from 0.3 dS m-1 reduced gas exchange, the synthesis of photosynthetic pigments, and the number of bolls in cotton cv. BRS Jade. Salinity levels from 0.3 dS m-1 induced stomatal closure and reduced transpiration, CO2 assimilation rate, the levels of photosynthetic pigments, and production components of cotton cv. BRS Jade. The salicylic acid concentrations of 2.6 and 2.7 mM increased CO2 assimilation rate and stomatal conductance, respectively, in the cotton plants. Foliar application of salicylic acid did not mitigate the effects of salt stress on gas exchange, the synthesis of photosynthetic pigments, or production components of cotton.

Author Biographies

Fernanda Silva de Souza, Universidade Federal de Campina Grande

M.e in Agribusiness Systems, Center of Agrifood Science and Technology, Universidade Federal de Campina Grande, UFCG, Pombal, PB, Brazil.

Lauriane Almeida dos Anjos Soares, Universidade Federal de Campina Grande

Profa, Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

Geovani Soares de Lima, Universidade Federal de Campina Grande

Prof., Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Alan Keis Chaves de Almeida, Universidade Federal de Campina Grande

Graduated in Agronomy Academic Unit of Agricultural Sciences, Center of Agrifood Science and Technology, UFCG, Pombal, PB, Brazil.

André Alisson Rodrigues da Silva, Universidade Federal de Campina Grande

Junior Postdoctoral Fellow, Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Francisco Jean da Silva Paiva, Universidade Federal de Campina Grande

Student of the Doctoral Course of the Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Hans Raj Gheyi, Universidade Federal de Campina Grande

Prof., Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

Pedro Dantas Fernandes, Universidade Federal de Campina Grande

Prof., Post Graduate Program in Agricultural Engineering, Center of Technology and Natural Resources, UFCG, Campina Grande, PB, Brazil.

References

Abdelhamid, M., Sadak, M. S. H., Schmidhalter, U., & El-Saady, A. K. (2013). Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta Biológica Colombiana, 18(3), 499-510.

Arnon, D. I. (1949). Copper enzymes in isolated cloroplasts: Polyphenoloxidases in Beta vulgaris. Plant Physiology, 24(1), 1-15. doi: 10.1104/pp.24.1.1 DOI: https://doi.org/10.1104/pp.24.1.1

Bagheri, M. Z. (2014). The effect of maize priming on germination characteristics, catalase and peroxidase enzyme activity, and total protein content under salt stress. International Journal of Biosciences, 4(2), 104-112.

Bernardo, S., Soares, A. A., & Mantovani, E. C. (2013). Manual de irrigação (8a ed.). UFV.

Bezerra, I. L., Nobre, R. G., Gheyi, H. R., Souza, L. de P., Pinheiro, F. W. A., & Lima, G. S. de. (2018). Morphophysiology of guava under saline water irrigation and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(1), 32-37. doi: 10.1590/1807-1929/agriambi.v22n1p32-37 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n1p32-37

Cruz, J. L., Coelho, E. F., Coelho, M. A., Fº., & Santos, A. A. dos. (2018). Salinity reduces nutrients absorption and efficiency of their utilization in cassava plants. Ciência Rural, 48(11), e20180351. doi: 10.1590/0103-8478cr20180351 DOI: https://doi.org/10.1590/0103-8478cr20180351

Dantas, M. V., Lima, G. S. de, Gheyi, H. R., Silva, A. A. R. da, Melo, A. S. de, & Medeiros, L. C. de. (2021). Gas exchange and photosynthetic pigments of West Indian cherry under salinity stress and salicylic acid. Comunicata Scientiae, 12(1), e3664. doi: 10.14295/CS.v12.3664

Denaxa, N. K., Theodoros, D., & Roussos, P. A. (2020) Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. Scientia Horticulturae, 259(1), 1-11. doi: 10.1016/j.scienta.2019.108812 DOI: https://doi.org/10.1016/j.scienta.2019.108812

Dias, A. S., Lima, G. S. de, Gheyi, H. R., Soares, L. A. dos A., & Fernandes, P. D. (2020). Growth and gas exchanges of cotton under water salinity and nitrogen-potassium combination. Revista Caatinga, 33(2), 470-479. doi: 10.1590/1983-21252020v33n219rc DOI: https://doi.org/10.1590/1983-21252020v33n219rc

Dias, A. S., Lima, G. S. de, Pinheiro, F. W. A., Gheyi, H. R., & Soares, L. A. dos A. (2019). Gas exchanges, quantum yield and photosynthetic pigments of West Indian cherry under salt stress and potassium fertilization. Revista Caatinga, 32(2), 429-439. doi: 10.1590/1983-21252019v32n216rc DOI: https://doi.org/10.1590/1983-21252019v32n216rc

El-Taher, A. M., El-Raouf, H. S. A., Osman, N. A., Azoz, S. N., Omar, M. A., Elkelish, A., & El-Hady, M. A. M. A. (2022). Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (Vigna unguiculata L.) plants. Plants, 11(1), e115. doi: 10.3390/plants11010115 DOI: https://doi.org/10.3390/plants11010115

Empresa Brasileira de Pesquisa Agropecuária (2015). Algodão colorido - BRS Jade. Centro Nacional de Pesquisa do Algodão. https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/2810/algodão-colorido---brs-jade

Fernandes, E. A., Soares, L. A. dos A., Lima, G. S. de, Silva, A. M. de S., Neta, Roque, I. A., Silva, F. A. da, Fernandes, P. D., & Lacerda, C. N. de. (2021). Cell damage, gas exchange, and growth of Annona squamosa L. under saline water irrigation and potassium fertilization. Semina: Ciências Agrárias, 42(3), 999-1018. doi: 10.5433/1679-0359.2021v42n3p999 DOI: https://doi.org/10.5433/1679-0359.2021v42n3p999

Ferreira, D. F. (2019). SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450

Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728-736. doi: 10.1016/j.jplph.2005.12.009 DOI: https://doi.org/10.1016/j.jplph.2005.12.009

Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14-25. doi: 10.1016/j.envexpbot.2009.08.005 DOI: https://doi.org/10.1016/j.envexpbot.2009.08.005

Javaheri, M., Mashayekhi, K., Dadkhah, A., & Tavallaee, F. Z. (2012). Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). International Journal of Agriculture and Crop Sciences, 4(16), 1184-1187.

Khalvandi, M., Siosemardeh, A., Roohi, E., & Keramati, S. (2021). Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1), e05908. doi: 10.1016/j.heliyon.2021.e05908 DOI: https://doi.org/10.1016/j.heliyon.2021.e05908

Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1-10. doi: 10.5423/PPJ.RW.12.2019.0295 DOI: https://doi.org/10.5423/PPJ.RW.12.2019.0295

Kumar, S., Ahanger, M. A., Alshaya, H., Jan, B. L., & Yerramilli, V. (2022). Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in Capsicum annuum. Saudi Journal of Biological Sciences, 29(3), 1337-1347. doi: 10.1016/j.sjbs.2022.01.028 DOI: https://doi.org/10.1016/j.sjbs.2022.01.028

Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., Nobre, R. G., Pinheiro, F. W. A., & Silva, A. A. R. da. (2017). Gas exchanges and production of colored cotton under salt stress and nitrogen fertilization. Bioscience Journal, 33(6), 1495-1505. doi: 10.14393/BJ-v33n6a2017-37109 DOI: https://doi.org/10.14393/BJ-v33n6a2017-37109

Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., & Andrade, E. M. G. (2018). Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Revista Caatinga, 31(1), 151-160. doi: 10.1590/1983-21252018v31n118rc DOI: https://doi.org/10.1590/1983-21252018v31n118rc

Lima, G. S. de, Dias, A. S., Soares, L. A. dos A., Gheyi, H. R., Nobre, R. G., & Silva, A. A. R. da. (2019b). Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias, 42(1), 214-225. doi: 10.19084/RCA18123

Lima, G. S. de, Fernandes, C. G. J., Soares, L. A. dos A., Gheyi, H. R., & Fernandes, P. D. (2020). Gas exchange, chloroplast pigments and growth of passion fruit cultivated with saline water and potassium fertilization. Revista Caatinga, 33(1), 184-194. doi: 10.1590/1983-21252020v33n120rc DOI: https://doi.org/10.1590/1983-21252020v33n120rc

Lima, G. S. de, Pinheiro, F. W. A., Dias, A. S., Gheyi, H. R., Nobre, R. G., Soares, L. A. dos A., Silva, A. A. R. da, & Silva, E. M. da. (2019a). Gas exchanges and production of West Indian cherry cultivated under saline water irrigation and nitrogen fertilization. Semina: Ciências Agrárias, 40(6), 2947-2960. doi: 10.5433/1679-0359.2019v40n6Supl2p2947 DOI: https://doi.org/10.5433/1679-0359.2019v40n6Supl2p2947

Lima, G. S. de, Pinheiro, F. W. A., Gheyi, H. R., Soares, L. A. dos A., Sousa, P. F. do N., & Fernandes, P. D. (2022). Saline water irrigation strategies and potassium fertilization on physiology and fruit production of yellow passion fruit. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(3), 180-189. doi: 10. 1590/1807-1929/agriambi.v26n3p180-189 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n3p180-189

Lira, R. M., Silva, Ê. F. F., Barros, M. S., Gordin, L. C., Willadino, L. G., & Barbosa, R. F. (2018). Water potential and gas exchanges in sugarcane irrigated with saline waters. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(10), 679-682. doi: 10.1590/1807-1929/agriambi.v22n10p679-682 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n10p679-682

Medeiros, J. F. (1992). Qualidade da água de irrigação e evolução da salinidade nas propriedades assistidas pelo “GAT” nos Estados do RN, PB e CE. Dissertação de mestrado em Engenharia Agrícola: Área de concentração em Irrigação e Drenagem, Universidade Federal da Paraíba, Campina Grande, PB, Brasil.

Mendonça, A. J. T., Silva, A. A. R., Lima, G. S. de, Soares, L. A. A. dos, Oliveira, V. K. N., Gheyi, H. R., Lacerda, C. F., Azevedo, C. A. V., Lima, V. L. A., & Fernandes, P. D. (2022). Salicylic acid modulates okra tolerance to salt stress in hydroponic system. Agriculture, 12(10), e1687. doi: 10.3390/agriculture12101687 DOI: https://doi.org/10.3390/agriculture12101687

Nahar, K., Hasanuzzaman, M., Rahman, A., Alam, M., Mahmud, J. A., Suzuki, T., & Fujita, M. (2016). Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Frontiers in Plant Science, 7(1), 1104-1118. doi: 10.3389/fpls.2016.01104 DOI: https://doi.org/10.3389/fpls.2016.01104

Naz, S., Bilal, A., Saddiq, B., Ejaz, S., Ali, S., Haider, S. T. A., Sardar, H., Nasir, B., Ishtiaq, A., Tiwari, R. K., Lal, M. K., Shakoor, A., Alyemeni, M. N., Mushtaq, N., & Altaf, M. A. (2022). Foliar application of salicylic acid improved growth, yield, quality and photosynthesis of pea (Pisum sativum L.) by improving antioxidant defense mechanism under saline conditions. Sustainability, 14(21), e14180. doi: 10.3390/su142114180 DOI: https://doi.org/10.3390/su142114180

Nazar, R., Umar, S., Khan, N. A., & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98(1), 84-94. doi: 10.1016/j.sajb.2015.02.005 DOI: https://doi.org/10.1016/j.sajb.2015.02.005

Nobrega, J. S., Bruno, R. D. L. A., Figueiredo, F. R. A., Silva, T. I. da, Fátima, R. T. de, Ribeiro, J. E. da S., & Nascimento, R. G. S. (2020). Acúmulo de biomassa e pigmentos fotossintéticos em plantas de Mesosphaerum suaveolens L. Kuntze sob estresse salino e doses de ácido salicílico. Research, Society and Development, 9(5), e121953286. doi: 10.33448/rsd-v9i5.3286 DOI: https://doi.org/10.33448/rsd-v9i5.3286

Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira (Ed.), , Métodos de pesquisa em fertilidade do solo (pp. 189-253). Brasília.

Pinheiro, F. W. A., Lima, G. S. de, Gheyi, H. R., Soares, L. A. dos A., Oliveira, S. G. de, & Silva, F. A. da. (2022). Gas exchange and yellow passion fruit production under irrigation strategies using brackish water and potassium. Revista Ciência Agronômica, 53(1), e20217816. doi: 10.5935/1806-6690.20220009 DOI: https://doi.org/10.5935/1806-6690.20220009

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. (USDA Handbook, 60). Department of Agriculture. DOI: https://doi.org/10.1097/00010694-195408000-00012

Roque, I. A., Soares, L. A. dos A., Lima, G. S. de, Lopes, I. A. P., Silva, L. de A., & Fernandes, P. D. (2022). Biomass, gas exchange and production of cherry tomato cultivated under saline water and nitrogen fertilization. Revista Caatinga, 35(3), 686-696. doi: 10.1590/1983-21252022v35n320rc DOI: https://doi.org/10.1590/1983-21252022v35n320rc

Sá, F. V. da S., Gheyi, H. R., Lima, G. S. de, Paiva, E. P. de, Silva, L. de A., Moreira, R. C. L., Fernandes, P. D., & Dias, A. S. (2019). Ecophysiology of West Indian cherry irrigated with saline water under phosphorus and nitrogen doses. Bioscience Journal, 35(1), 211-221. doi: 10.14393/BJ-v35n1a2019-41742 DOI: https://doi.org/10.14393/BJ-v35n1a2019-41742

Safeer, M., Qamar, R., Altaf, M. M., Sarwar, N., Farooq, O., Iqbal, M. M., & Ahmad-Anjum, S. (2019). Exogenous application of salicylic acid ameliorates growth and yield of sunflower (Helianthus annuus L.) in saline soil. Agrociência, 53(2), 207-217.

Santos, J. B. dos, Gheyi, H. R., Lima, G. S. de, Xavier, D. A., Cavalcante, L. F., & Centeno, C. R. M. (2016). Morfofisiologia e produção do algodoeiro herbáceo irrigado com águas salinas e adubado com nitrogênio. Comunicata Scientiae, 7(1), 86-96. doi: 10.14295/CS.v7i1.1158 DOI: https://doi.org/10.14295/cs.v7i1.1158

Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Soares, L. A. dos A., Gheyi, H. R., & Oliveira, R. C. de (2017). Potassium fertilization in the cultivation of colored cotton irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(9), 628-633. doi: 10.1590/1807-1929/agriambi.v21n9p628-633 DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n9p628-633

Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Veloso, L. L. de S. A., & Gheyi, H. R. (2019a). Salt stress and exogenous application of hydrogen peroxide on photosynthetic parameters of soursop. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 257-263. doi: 10.1590/1807-1929/agriambi.v23n4p257-263 DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n4p257-263

Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Veloso, L. L. de S. A., & Gheyi, H. R. (2020). Salicylic acid as an attenuator of salt stress in soursop. Revista Caatinga, 33(4), 1092-1101. doi: 10.1590/1983-21252020v33n424rc DOI: https://doi.org/10.1590/1983-21252020v33n424rc

Silva, A. A. R. da, Veloso, L. L. de S. A., Nascimento, R. do, Nascimento, E. C. S., Bezerra, C. V. de C., & Pereira, M. C. de A. (2019b). Gas exchanges and growth of cotton cultivars under water salinity. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(6), 393-399. doi: 10.1590/1807-1929/agriambi.v23n6p393-399 DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n6p393-399

Soares, L. A. dos A., Felix, C. M., Lima, G. S. de, Gheyi, H. R., Silva, L. de A., & Fernandes, P. D. (2023). Gas exchange, growth, and production of cotton genotypes under water deficit in phenological stages. Revista Caatinga, 36(1), 145-157. doi: 10.1590/1983-21252023v36n116r

Soares, L. A. dos A., Fernandes, P. D., Lima, G. S. de, Suassuna, J. F., Brito, M. E. B., & Sá, F. V. da S. (2018b). Growth and fiber quality of colored cotton under salinity management strategies. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 332-337. doi: 10.1590/1807-1929/agriambi.v22n5p332-337 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n5p332-337

Soares, L. A. dos A., Fernandes, P. D., Lima, G. S. de, Suassuna, J. F., & Pereira, R. F. (2018a). Gas exchanges and production of colored cotton irrigated with saline water at different phenological stages. Revista Ciência Agronômica, 49(2), 239-248. doi: 10.5935/1806-6690.20180027 DOI: https://doi.org/10.5935/1806-6690.20180027

Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 26-32. doi: 10.1186/s40538-019-0169-9 DOI: https://doi.org/10.1186/s40538-019-0169-9

Souza, L. de P., Lima, G. S. de, Gheyi, H. R., Nobre, R. G., & Soares, L. A. dos A. (2018). Emergence, growth, and production of colored cotton subjected to salt stress and organic fertilization. Revista Caatinga, 31(3), 719-729. doi: 10.1590/1983-21252018v31n322rc DOI: https://doi.org/10.1590/1983-21252018v31n322rc

Suassuna, J. F., Fernandes, P. D., Brito, K. S. A. de, Nascimento, R. do, Melo, A. S. de, & Brito, M. E. B. (2014). Trocas gasosas e componentes de crescimento em porta-enxertos de citros submetidos à restrição hídrica. Irriga, 19(3), 464-477. doi: 10.15809/irriga.2014v19n3p464 DOI: https://doi.org/10.15809/irriga.2014v19n3p464

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (Org.) (2017). Manual de métodos de análise de solo (3a ed.). EMBRAPA.

Time, A., Garrido, M., & Acevedo, E. (2018). Water relations and growth response to drought stress of Prosopis tamarugo Phil. A review. Journal of soil science and plant nutrition, 18(2), 329-343. doi: 10.4067/S0718-95162018005001103 DOI: https://doi.org/10.4067/S0718-95162018005001103

Tufail, A., Arfan, M., Gurmani, A. R., Khan, A., & Bano, A. (2013). Salicylic acid induced salinity tolerance in maize (Zea mays). Pakistan Journal of Botany, 45(1), 75-82.

Veloso, L. L. de S. A., Azevedo, C. A. V. de, Nobre, R. G., Lima, G. S. de, Capitulino, J. D., & Silva, F.de A. da (2023). H2O2 alleviates salt stress effects on photochemical efficiency and photosynthetic pigments of cotton genotypes. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(1), 34-41. doi: 10.1590/1807-1929/agriambi.v27n1p34-41 DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n1p34-41

Vicente, M. R. S., & Plasencia, J. (2011). Salicylic acid beyond defense: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338. doi: 10.1093/jxb/err031 DOI: https://doi.org/10.1093/jxb/err031

Downloads

Published

2023-03-06

How to Cite

Souza, F. S. de, Soares, L. A. dos A., Lima, G. S. de, Almeida, A. K. C. de, Silva, A. A. R. da, Paiva, F. J. da S., … Fernandes, P. D. (2023). Physiology and production components of cotton plants under salt stress and salicylic acid application. Semina: Ciências Agrárias, 44(1), 147–170. https://doi.org/10.5433/1679-0359.2023v44n1p147

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4