Aplicação foliar de prolina na mitigação do estrese salino nos índices fisiológicos de maracujazeiro-azedo
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1637Palavras-chave:
Passiflora edulis Sims, SalinidadeResumo
A salinidade é um dos principais estresses abióticos que restringe o crescimento das plantas e causa perdas significativas no rendimento. Os efeitos do estresse salino são mais severos em regiões semiáridas, devido as condições climáticas e a ocorrência de fontes hídricas com teores elevados de sais. Neste contexto, a busca por estratégias que viabilizem o uso de águas salinas na irrigação é fundamental para garantir a necessidade de produção de alimentos. Assim, objetivou-se com este estudo avaliar os efeitos das aplicações foliar de concentrações de prolina nos índices fisiológicos de maracujazeiro-azedo irrigados com águas salinas na fase de formação de mudas. A pesquisa foi conduzida em casa de vegetação pertencente à Unidade Acadêmica de Engenharia Agrícola da Universidade Federal de Campina Grande, em Campina Grande – PB, utilizando-se o delineamento experimental inteiramente casualizado, em esquema fatorial 5 × 4, sendo cinco níveis de condutividade elétrica da água de irrigação CEa - (0,6; 1,2; 1,8; 2,4 e 3,0 dS m-1) e quatro concentrações de prolina (0, 5, 10 e 15 mM) com quatro repetições e cada parcela continha duas plantas, totalizando 160 unidades experimentais. A salinidade da água a partir de 0,6 dS m-1 reduziu o conteúdo relativo de água, trocas gasosas, e elevou o extravasamento de eletrólitos no limbo foliar das plantas de maracujazeiro-azedo. A irrigação com água de condutividade elétrica entre 1,3 e 1,8 dS m-1 estimulou a biossíntese de pigmentos fotossintéticos do maracujazeiro-azedo ‘BRS GA1’, aos 66 dias após a semeadura. A aplicação foliar de prolina nas concentrações variando de 4,5 e 6,5 mM aumentou a condutância estomática, a transpiração, a taxa de assimilação de CO2, a eficiência instantânea de carboxilação e os teores de clorofilas do maracujazeiro-azedo.
Downloads
Referências
Alvares, C. A., Stape, J. L., Sentelhas, P. C., & Gonçalves, J. L. M. (2013). Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology, 113(1), 407-427. doi: 10.1007/s00704-012-0796-6 DOI: https://doi.org/10.1007/s00704-012-0796-6
Andrade, E. M. G., Lima, G. S., Lima, V. L. A., Silva, S. S., Dias, A. S., & Gheyi, H. R. (2022). Hydrogen peroxide as attenuator of salt stress effects on the physiology and biomass of yellow passion fruit. Revista Brasileira de Engenharia Agricola e Ambiental, 26(8), 571-578. doi: 10.1590/1807-1929/agriambi.v26n8p571-578 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n8p571-578
Anwar, T., Qureshi, H., Fatimah, H., Siddiqi, E. H., Anwaar, S., Moussa, I. M., & Adil, M. F. (2023). Improvement of physio-biochemical attributes and mitigation of salinity stress by combined application of melatonin and silicon nanoparticles in Brassica oleracea var. botrytis. Scientia Horticulturae, 322(1), 112456. doi: 10.1016/j.scienta.2023.112456 DOI: https://doi.org/10.1016/j.scienta.2023.112456
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156(1), 64-77. doi: 10.1016/j.plaphy.2020.08.042 DOI: https://doi.org/10.1016/j.plaphy.2020.08.042
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 23(1), 1-15. doi: 10.1104/pp.24.1.1 DOI: https://doi.org/10.1104/pp.24.1.1
Brito, R. S., Andrade, R. de C. Neto, & Andrade, R. A. (2022). Survey of sour passion fruit cultivars commercialized in Brazil. Scientific Electronic Archives, 15(1), 65-72. doi: 10.36560/151020221603 DOI: https://doi.org/10.36560/151020221592
Butt, M., Sattar, A., Abbas, T., Sher, A., Ijaz, M., Ul-Allah, S., Shaheen, M. R., & Kaleem, F. (2020). Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes, ionic homeostasis, and antioxidant defense mechanisms. Horticulture, Environment, and Biotechnology, 61(1), 693-702. doi: 10.1007/s13580-020-00236-8 DOI: https://doi.org/10.1007/s13580-020-00236-8
Cacefo, V., Ribas, A. F., Guidorizi, K. A., & Vieira, L. G. E. (2021). Exogenous proline alters the leaf ionomic profiles of transgenic and wild-type tobacco plants under water deficit. Industrial Crops and Products, 170(1), 113830. doi: 10.1007/s13580-020-00236-8 DOI: https://doi.org/10.1016/j.indcrop.2021.113830
Cavalcante, L. F., Dias, T. J., Nascimento, R., & Freire, J. L. O. (2011). Clorofila e carotenoides em maracujazeiro-amarelo irrigado com águas salinas no solo com biofertilizante bovino. Revista Brasileira de Fruticultura, 33(1), 699-705. doi: 10.1590/S0100-29452011000500098 DOI: https://doi.org/10.1590/S0100-29452011000500098
Dias, A. S., Lima, G. S. de, Sá, F. V. da S., Gheyi, H. R, Soares, L. A. dos A., & Fernandes, P. D. (2018). Gas exchanges and photochemical efficiency of West Indian cherry cultivated with saline water and potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(9), 628-633. doi: 10.1590/1807-1929/agriambi.v22n9p628-633 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n9p628-633
El-Betalgi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(1), e1702. doi: 10.3390/molecules25071702 DOI: https://doi.org/10.3390/molecules25071702
El-Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science, 11(1), e1127. doi: 10.3389/fpls.2020.01127 DOI: https://doi.org/10.3389/fpls.2020.01127
El-Shawa, G. M. R., Rashwan, E. M., & Abdelaal, K. A. A. (2020). Mitigating salt stress effects by exogenous application of proline and yeast extract on morphophysiological, biochemical and anatomical characters of calendula plants. Scientific Journal of Flowers and Ornamental Plants, 7(1), 461-482. doi: 10.21608/sjfop.2020.135166 DOI: https://doi.org/10.21608/sjfop.2020.135166
Fátima, R. T., Nóbrega, J. S., Ferreira, J. T., Celedônio, W. F., Figueiredo, F. R. A., Ribeiro, J. E., Pereira, M. B., & Pereira, W. E. (2022). Physiological responses in sugar apple seedlings under irrigation with saline water and foliar nitrogen. Revista Brasileira de Ciências Agrárias, 17(1), 1-10. doi: 10.5935/1806-6690.20230029 DOI: https://doi.org/10.5039/agraria.v17i2a473
Fernandes, E. A., Soares, L. A. dos A., Lima, G. S. de, Silva, A. M. de S., Neta, Roque, I. A., Silva, F. A. da, Fernandes, P. D., & Lacerda, C. N. de. (2021). Cell damage, gas exchange, and growth of Annona squamosa L. under saline water irrigation and potassium fertilization. Semina: Ciências Agrárias, 42(3), 999-1018. doi: 10.5433/1679-0359.2021v42n3p999 DOI: https://doi.org/10.5433/1679-0359.2021v42n3p999
Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450 DOI: https://doi.org/10.28951/rbb.v37i4.450
Figueiredo, F. R. A., Lopes, M. F. Q., Silva, R. T., Nóbrega, J. S., Silva, T. I., & Bruno, R. L. A. (2019). Respostas fisiológicas de mulungu submetida a estresse salino e aplicação de ácido salicílico. Irriga, 24(3), 662-675. doi: 10.15809/irriga.2019v24n3p662-675 DOI: https://doi.org/10.15809/irriga.2019v24n3p662-675
Galvão Sobrinho, T., Silva, A. A. R. da, Lima, G. S. de, Lima, V. L. A. de, Borges, V. E., Nunes, K. G., Soares, L. A. dos A., Saboya, L. M. F., Gheyi, H. R., Gomes, J. P., Fernandes, P. D., & Azevedo, C. A. V. de. (2023). Foliar applications of salicylic acid on boosting salt stress tolerance in sour passion fruit in two cropping cycles. Plants, 12(10), 1-32. doi: 10.3390/plants12102023 DOI: https://doi.org/10.3390/plants12102023
González-Delgado, M., Minjares-Fuentes, R., Mota-Ituarte, M., Pedroza-Sandoval, A., Comas-Serra, F., Quezada-Rivera, J. J., & Femenia, A. (2023). Joint water and salinity stresses increase the bioactive compounds of Aloe vera (Aloe barbadensis Miller) gel enhancing its related functional properties. Agricultural Water Management, 285(1), e108374. doi: 10.1016/j.agwat.2023.108374 DOI: https://doi.org/10.1016/j.agwat.2023.108374
Instituto Brasileiro de Geografia e Estatística (2022). Produção de maracujá. https://www.ibge.gov.br/explica/producao-agropecuaria/maracuja/br
Lacerda, C. N. de, Lima, G. S. de, Soares, L. A. dos A., Fátima, R. T. de, Gheyi, H. R., & Azevedo, C. A. V. de. (2020). Morphophysiology and production of guava as a function of water salinity and salicylic acid. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(6), 451-458. doi: 10.1590/1807-1929/agriambi.v26n6p451-458 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n6p451-458
Leite, R. S., Navarro, S. H., Nascimento, M. N., Potosme, N. M. R., Silva, A. L., & Santos, R. J. (2022). Proline and sodium nitroprusside increase the tolerance of Physalis peruviana L. Plants to water deficit through chemical priming. Ciência e Agrotecnologia, 46(1), 004622. doi: 10.1590/1413-7054202246004622 DOI: https://doi.org/10.1590/1413-7054202246004622
Lima, G.S. de, Soares, M. G. da S., Soares, L. A. dos A., Gheyi, H. R., Pinheiro, F. W. A., & Silva, J. B. da (2021). Potassium and irrigation water salinity on the formation of sour passion fruit seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(6), 393-401. doi: 10.1590/1807-1929/agriambi.v25n6p393-401 DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n6p393-401
Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., & Andrade, E. M. G. (2018). Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Revista Caatinga, 31(1), 151-160. doi: 10.1590/1983-21252018v31n118rc DOI: https://doi.org/10.1590/1983-21252018v31n118rc
Lima, G. S. de, Fernandes, C. G. J., Soares, L. A. dos A., Gheyi, H. R., & Fernandes, P. D. (2020a). Gas exchange, chloroplast pigments and growth of passion fruit cultivated with saline water and potassium fertilization. Revista Caatinga, 33(12), 184-194. doi: 10.1590/1983-21252020v33n120rc DOI: https://doi.org/10.1590/1983-21252020v33n120rc
Lima, G. S. de, Pinheiro, F. W. A., Dias, A. S., Gheyi, H. R., Nobre, R. G., Soares, L. A. dos A., Silva, A. A. R. da, & Silva, E. M. da. (2019). Gas exchanges and production of West Indian cherry cultivated under saline water irrigation and nitrogen fertilization. Semina: Ciências Agrárias, 40(6), 2947-2960. doi: 10.5433/1679-0359.2019v40n6Supl2p2947 DOI: https://doi.org/10.5433/1679-0359.2019v40n6Supl2p2947
Lima, G. S. de, Silva, J. B. da, Pinheiro, F. W. A., Soares, L. A. dos A., & Gheyi, H. R. (2020b). Potassium does not attenuate salt stress in yellow passion fruit under irrigation management strategies. Revista Caatinga. 33(4), 1082-1091. doi: 10.1590/1983-21252020v33n423rc DOI: https://doi.org/10.1590/1983-21252020v33n423rc
Medeiros, J. F. (1992). Qualidade de água de irrigação e evolução da salinidade nas propriedades assistidas pelo GAT nos Estados de RN, PB e CE. Dissertação de mestrado, Universidade Federal da Paraíba, Campina Grande, PB, Brasil.
Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira (Ed.), Métodos de pesquisa em fertilidade do solo (pp. 189-253). Brasília: EMBRAPA Informação Tecnológica.
Pinheiro, F. W. A., Lima, G. S. de, Gheyi, H. R., Soares, L. A. dos A., Oliveira, S. G. de, & Silva, F. A. da (2022). Gas exchange and yellow passion fruit production under irrigation strategies using brackish water and potassium. Revista Ciência Agronômica, 53(1), e20217816. doi: 10.5935/1806-6690.20220009 DOI: https://doi.org/10.5935/1806-6690.20220009
Ramezanifar, H., Yazdanpanah, N., Yazd, H. G. H., Tavousi, M., & Mahmoodabadi, M. (2021). Spinach growth regulation due to interactive salinity, water, and nitrogen stresses. Journal of Plant Growth Regulation, 41(1), 1654-1671. doi: 10.1007/s00344-021-10407-1 DOI: https://doi.org/10.1007/s00344-021-10407-1
Ramos, J. G., Lima, V. L. A., Lima, G. S. de, Paiva, F. J. S., Pereira, M. O., & Nunes, K. G. (2022). Hydrogen peroxide as salt stress attenuator in sour passion fruit. Revista Caatinga, 35(2), 412-422. doi: 10.1590/1983-21252022v35n217rc DOI: https://doi.org/10.1590/1983-21252022v35n217rc
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. (Agriculture Handbook, 60). U. S. Department of Agriculture. DOI: https://doi.org/10.1097/00010694-195408000-00012
Scotti-Campos, P., Pham-Thi, A. T., Semedo, J. N., Pais, I. P., Ramalho, J. C., & Matos, M. C. (20.13). Physiological responses and membrane integrity in three Vigna genotypes with contrasting drought tolerance. Emirates Journal of Food and Agriculture, 25(12), 1002-1013. doi: 10.9755/ejfa.v25i12.16733 DOI: https://doi.org/10.9755/ejfa.v25i12.16733
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), e259. doi: 10.3390/plants10020259 DOI: https://doi.org/10.3390/plants10020259
Semida, W. M., Abdelkhalik, A., Rady, M. O. A., Marey, R. A., & El-Mageed, T. A. A. (2020). Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272(1), e109580. doi: 10.3389/fpls.2022.897027 DOI: https://doi.org/10.1016/j.scienta.2020.109580
Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Gheyi, H. R., Souza, L. de P., & Veloso, L. L. S. A. (2019b). Gas exchanges and growth of passion fruit seedlings under salt stress and hydrogen peroxide. Pesquisa Agropecuária Tropical, 49(1), e55671. doi: 10.1590/1983-40632019v4955671 DOI: https://doi.org/10.1590/1983-40632019v4955671
Silva, A. M. de S., Neta, Soares, L. A. dos A., Lima, G. S. de, Silva, L. de A., Ferreira, F. N., & Fernandes, P. D. (2020). Morphophysiology of the passion fruit ‘BRS Rubi do Cerrado’ irrigated with saline waters and nitrogen fertilization. Comunicata Scientiae, 11(1), 3456. doi: 10.14295/cs.v12.3456 DOI: https://doi.org/10.14295/cs.v12.3456
Silva, E. M. da, Lima, G. S. de, Gheyi, H. R., Nobre, R. G., Sá, F. V. da S., & Souza, L. de P. (2018). Growth and gas exchanges in soursop under irrigation with saline water and nitrogen sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(11), 776-781. doi: 10.1590/1807-1929/agriambi.v22n11p776-781 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n11p776-781
Silva, S. S. da, Lima, G. S. de, Lima, V. L. A. de, Gheyi, H. R., Soares, L. A. dos A., & Lucena, R. C. M. (2019a). Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical, 49(1), 1983-4063. doi: 10.1590/1983-40632019v4954822 DOI: https://doi.org/10.1590/1983-40632019v4954822
Skider, R. K., Wang, X., Zhang, H., Gui, H., Dong, Q., Jin, D., & Song, M. (2020). Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants, 9(1), e450. doi: 10.3390/plants9040450 DOI: https://doi.org/10.3390/plants9040450
Soares, L. A. dos A., Fernandes, P. D., Lima, G. S. de, Suassuna, J. F., Brito, M. E. B., & Sá, F. V. da S. (2018). Growth and fiber quality of colored cotton under salinity management strategies. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 332-337. doi: 10.1590/1807-1929/agriambi.v22n5p332-337 DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n5p332-337
Tabssum, F., Zaman, Q. U., Chen, Y., Riaz, U., Ashraf, W., Aslam, A., Ehsan, N., Nawaz, R., Aziz, H., & Shah, S. U. S. (2019). Exogenous application of proline improved salt tolerance in rice through modulation of antioxidant activities. Pakistan Journal of Agricultural Research, 32(1), 140-151. doi: 10.17582/journal.pjar/2019/32.1.140.151 DOI: https://doi.org/10.17582/journal.pjar/2019/32.1.140.151
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (vol. 3, n. 1, 3a ed.). EMBRAPA Solos.
Torres, R. A. F., Lima, G. S., Paiva, F. J. S., Soares, L. A. A., Silva, F. A., Silva, L. A., Oliveira, V. K. N., Mendonca, A. J. T., Roque, I. A., & Silva, S. T. A. (2023). Physiology and production of sugar-apple under water stress and application of proline. Brazilian Journal of Biology, 83(1), e273404. doi: 10.1590/1519-6984.273404 DOI: https://doi.org/10.1590/1519-6984.273404
Veloso, L. L. S. A., Nobre, R. G., Souza, C. M. A., Fatima, R. T., Souza, L. P., Elias, J. J., Azevêdo, F. L., & Santos, J. B. (2018). Morphophysiology of guava cv. Paluma with water of different salt concentrations and proline doses. Semina: Ciências Agrárias, 39(5), 1877-1886. doi: 10.5433/1679-0359.2018v39n5p1877 DOI: https://doi.org/10.5433/1679-0359.2018v39n5p1877
Wanderley, J. A. C., Brito, M. E. B., Azevedo, C. A. V. de, Silva, F. C., Ferreira, F. N., & Lima, R. F. (2020). Cell damage and biomass of yellow passion fruit under water salinity and nitrogen fertilization. Revista Caatinga, 33(3), 757-765. doi: 10.1590/1983-21252020v33n319rc DOI: https://doi.org/10.1590/1983-21252020v33n319rc
Weatherley, P. E. (1950). Studies in the water relations of the cotton plant. I- The field measurements of water deficits in leaves. New Phytologist, 49(1), 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x DOI: https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
Zahedi, S. M., Abolhassani, M., Hadian-Delijou, M., Feyzi, H., Akbari, A., Rassouli, F., Koçak, M. Z., & Gohari, G. (2023). Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv Sultana). Plant Stress, 7(1), e100128. doi: 10.1007/s00344-021-10477-1 DOI: https://doi.org/10.1016/j.stress.2022.100128
Zhu, Y., Jiang, X., Zhang, J., He, Y., Zhu, X., Zhou, X., & Liu, Y. (2020). Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry, 156(1), 209-220. doi: 10.1016/j.plaphy.2020.09.014 DOI: https://doi.org/10.1016/j.plaphy.2020.09.014
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.