Foliar application of proline on the mitigation of salt stress in the physiological indices of sour passion fruit
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1637Keywords:
Passiflora edulis Sims, Salinity, Osmolyte synthesis.Abstract
Salinity is one of the main abiotic stresses that significantly constrict plant growth and lead to substantial reductions in crop yield. The adverse effects of salt stress are particularly pronounced in semi-arid regions, due to unfavorable climatic conditions and the presence of high-salinity water sources. In this context, the exploration of strategies for utilizing saline water in irrigation is essential to address the global food production demand. Therefore, the objective of this study was to assess the impact of foliar application of proline concentrations on the physiological indices of sour passion fruit during the seedling formation phase, with saline water as the irrigation source. The research was carried out within a greenhouse belonging to the Agricultural Engineering Academic Unit of the Federal University of Campina Grande, situated in Campina Grande - PB, Brazil. The study employed a completely randomized experimental design, organized in a 5 × 4 factorial arrangement consisting of five levels of electrical conductivity in the irrigation water (ECw: 0.6, 1.2, 1.8, 2.4, and 3.0 dS m-1) and four concentrations of proline (0, 5, 10, and 15 mM). Each treatment combination was replicated four times, and each experimental plot consisted of two sour passion fruit plants, resulting in a total of 160 experimental units. Irrigation with water having an electrical conductivity of 0.6 dS m-1 induced a reduction in relative water content and gas exchange and increased electrolyte leakage in the leaf blade of sour passion fruit plants. Irrigation with water exhibiting an electrical conductivity within the range of 1.3 to 1.8 dS m-1 stimulated the biosynthesis of photosynthetic pigments in the sour passion fruit cultivar 'BRS GA1', as observed 66 days after sowing. Foliar application of proline at concentrations ranging between 4.5 and 6.5 mM resulted in increased stomatal conductance, transpiration rates, CO2 assimilation rates, instantaneous carboxylation efficiency, and chlorophyll content of sour passion fruit plants.
Downloads
References
Alvares, C. A., Stape, J. L., Sentelhas, P. C., & Gonçalves, J. L. M. (2013). Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology, 113(1), 407-427. doi: 10.1007/s00704-012-0796-6
Andrade, E. M. G., Lima, G. S., Lima, V. L. A., Silva, S. S., Dias, A. S., & Gheyi, H. R. (2022). Hydrogen peroxide as attenuator of salt stress effects on the physiology and biomass of yellow passion fruit. Revista Brasileira de Engenharia Agricola e Ambiental, 26(8), 571-578. doi: 10.1590/1807-1929/agriambi.v26n8p571-578
Anwar, T., Qureshi, H., Fatimah, H., Siddiqi, E. H., Anwaar, S., Moussa, I. M., & Adil, M. F. (2023). Improvement of physio-biochemical attributes and mitigation of salinity stress by combined application of melatonin and silicon nanoparticles in Brassica oleracea var. botrytis. Scientia Horticulturae, 322(1), 112456. doi: 10.1016/j.scienta.2023.112456
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156(1), 64-77. doi: 10.1016/j.plaphy.2020.08.042
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiology, 23(1), 1-15. doi: 10.1104/pp.24.1.1
Brito, R. S., Andrade, R. de C. Neto, & Andrade, R. A. (2022). Survey of sour passion fruit cultivars commercialized in Brazil. Scientific Electronic Archives, 15(1), 65-72. doi: 10.36560/151020221603
Butt, M., Sattar, A., Abbas, T., Sher, A., Ijaz, M., Ul-Allah, S., Shaheen, M. R., & Kaleem, F. (2020). Foliage applied proline induces salt tolerance in chili genotypes by regulating photosynthetic attributes, ionic homeostasis, and antioxidant defense mechanisms. Horticulture, Environment, and Biotechnology, 61(1), 693-702. doi: 10.1007/s13580-020-00236-8
Cacefo, V., Ribas, A. F., Guidorizi, K. A., & Vieira, L. G. E. (2021). Exogenous proline alters the leaf ionomic profiles of transgenic and wild-type tobacco plants under water deficit. Industrial Crops and Products, 170(1), 113830. doi: 10.1007/s13580-020-00236-8
Cavalcante, L. F., Dias, T. J., Nascimento, R., & Freire, J. L. O. (2011). Clorofila e carotenoides em maracujazeiro-amarelo irrigado com águas salinas no solo com biofertilizante bovino. Revista Brasileira de Fruticultura, 33(1), 699-705. doi: 10.1590/S0100-29452011000500098
Dias, A. S., Lima, G. S. de, Sá, F. V. da S., Gheyi, H. R, Soares, L. A. dos A., & Fernandes, P. D. (2018). Gas exchanges and photochemical efficiency of West Indian cherry cultivated with saline water and potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(9), 628-633. doi: 10.1590/1807-1929/agriambi.v22n9p628-633
El-Betalgi, H. S., Mohamed, H. I., & Sofy, M. R. (2020). Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules, 25(1), e1702. doi: 10.3390/molecules25071702
El-Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science, 11(1), e1127. doi: 10.3389/fpls.2020.01127
El-Shawa, G. M. R., Rashwan, E. M., & Abdelaal, K. A. A. (2020). Mitigating salt stress effects by exogenous application of proline and yeast extract on morphophysiological, biochemical and anatomical characters of calendula plants. Scientific Journal of Flowers and Ornamental Plants, 7(1), 461-482. doi: 10.21608/sjfop.2020.135166
Fátima, R. T., Nóbrega, J. S., Ferreira, J. T., Celedônio, W. F., Figueiredo, F. R. A., Ribeiro, J. E., Pereira, M. B., & Pereira, W. E. (2022). Physiological responses in sugar apple seedlings under irrigation with saline water and foliar nitrogen. Revista Brasileira de Ciências Agrárias, 17(1), 1-10. doi: 10.5935/1806-6690.20230029
Fernandes, E. A., Soares, L. A. dos A., Lima, G. S. de, Silva, A. M. de S., Neta, Roque, I. A., Silva, F. A. da, Fernandes, P. D., & Lacerda, C. N. de. (2021). Cell damage, gas exchange, and growth of Annona squamosa L. under saline water irrigation and potassium fertilization. Semina: Ciências Agrárias, 42(3), 999-1018. doi: 10.5433/1679-0359.2021v42n3p999
Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. doi: 10.28951/rbb.v37i4.450
Figueiredo, F. R. A., Lopes, M. F. Q., Silva, R. T., Nóbrega, J. S., Silva, T. I., & Bruno, R. L. A. (2019). Respostas fisiológicas de mulungu submetida a estresse salino e aplicação de ácido salicílico. Irriga, 24(3), 662-675. doi: 10.15809/irriga.2019v24n3p662-675
Galvão Sobrinho, T., Silva, A. A. R. da, Lima, G. S. de, Lima, V. L. A. de, Borges, V. E., Nunes, K. G., Soares, L. A. dos A., Saboya, L. M. F., Gheyi, H. R., Gomes, J. P., Fernandes, P. D., & Azevedo, C. A. V. de. (2023). Foliar applications of salicylic acid on boosting salt stress tolerance in sour passion fruit in two cropping cycles. Plants, 12(10), 1-32. doi: 10.3390/plants12102023
González-Delgado, M., Minjares-Fuentes, R., Mota-Ituarte, M., Pedroza-Sandoval, A., Comas-Serra, F., Quezada-Rivera, J. J., & Femenia, A. (2023). Joint water and salinity stresses increase the bioactive compounds of Aloe vera (Aloe barbadensis Miller) gel enhancing its related functional properties. Agricultural Water Management, 285(1), e108374. doi: 10.1016/j.agwat.2023.108374
Instituto Brasileiro de Geografia e Estatística (2022). Produção de maracujá. https://www.ibge.gov.br/explica/producao-agropecuaria/maracuja/br
Lacerda, C. N. de, Lima, G. S. de, Soares, L. A. dos A., Fátima, R. T. de, Gheyi, H. R., & Azevedo, C. A. V. de. (2020). Morphophysiology and production of guava as a function of water salinity and salicylic acid. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(6), 451-458. doi: 10.1590/1807-1929/agriambi.v26n6p451-458
Leite, R. S., Navarro, S. H., Nascimento, M. N., Potosme, N. M. R., Silva, A. L., & Santos, R. J. (2022). Proline and sodium nitroprusside increase the tolerance of Physalis peruviana L. Plants to water deficit through chemical priming. Ciência e Agrotecnologia, 46(1), 004622. doi: 10.1590/1413-7054202246004622
Lima, G.S. de, Soares, M. G. da S., Soares, L. A. dos A., Gheyi, H. R., Pinheiro, F. W. A., & Silva, J. B. da (2021). Potassium and irrigation water salinity on the formation of sour passion fruit seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(6), 393-401. doi: 10.1590/1807-1929/agriambi.v25n6p393-401
Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., & Andrade, E. M. G. (2018). Saline water irrigation and nitrogen fertilization on the cultivation of colored fiber cotton. Revista Caatinga, 31(1), 151-160. doi: 10.1590/1983-21252018v31n118rc
Lima, G. S. de, Fernandes, C. G. J., Soares, L. A. dos A., Gheyi, H. R., & Fernandes, P. D. (2020a). Gas exchange, chloroplast pigments and growth of passion fruit cultivated with saline water and potassium fertilization. Revista Caatinga, 33(12), 184-194. doi: 10.1590/1983-21252020v33n120rc
Lima, G. S. de, Pinheiro, F. W. A., Dias, A. S., Gheyi, H. R., Nobre, R. G., Soares, L. A. dos A., Silva, A. A. R. da, & Silva, E. M. da. (2019). Gas exchanges and production of West Indian cherry cultivated under saline water irrigation and nitrogen fertilization. Semina: Ciências Agrárias, 40(6), 2947-2960. doi: 10.5433/1679-0359.2019v40n6Supl2p2947
Lima, G. S. de, Silva, J. B. da, Pinheiro, F. W. A., Soares, L. A. dos A., & Gheyi, H. R. (2020b). Potassium does not attenuate salt stress in yellow passion fruit under irrigation management strategies. Revista Caatinga. 33(4), 1082-1091. doi: 10.1590/1983-21252020v33n423rc
Medeiros, J. F. (1992). Qualidade de água de irrigação e evolução da salinidade nas propriedades assistidas pelo GAT nos Estados de RN, PB e CE. Dissertação de mestrado, Universidade Federal da Paraíba, Campina Grande, PB, Brasil.
Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In A. J. Oliveira (Ed.), Métodos de pesquisa em fertilidade do solo (pp. 189-253). Brasília: EMBRAPA Informação Tecnológica.
Pinheiro, F. W. A., Lima, G. S. de, Gheyi, H. R., Soares, L. A. dos A., Oliveira, S. G. de, & Silva, F. A. da (2022). Gas exchange and yellow passion fruit production under irrigation strategies using brackish water and potassium. Revista Ciência Agronômica, 53(1), e20217816. doi: 10.5935/1806-6690.20220009
Ramezanifar, H., Yazdanpanah, N., Yazd, H. G. H., Tavousi, M., & Mahmoodabadi, M. (2021). Spinach growth regulation due to interactive salinity, water, and nitrogen stresses. Journal of Plant Growth Regulation, 41(1), 1654-1671. doi: 10.1007/s00344-021-10407-1
Ramos, J. G., Lima, V. L. A., Lima, G. S. de, Paiva, F. J. S., Pereira, M. O., & Nunes, K. G. (2022). Hydrogen peroxide as salt stress attenuator in sour passion fruit. Revista Caatinga, 35(2), 412-422. doi: 10.1590/1983-21252022v35n217rc
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. (Agriculture Handbook, 60). U. S. Department of Agriculture.
Scotti-Campos, P., Pham-Thi, A. T., Semedo, J. N., Pais, I. P., Ramalho, J. C., & Matos, M. C. (20.13). Physiological responses and membrane integrity in three Vigna genotypes with contrasting drought tolerance. Emirates Journal of Food and Agriculture, 25(12), 1002-1013. doi: 10.9755/ejfa.v25i12.16733
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), e259. doi: 10.3390/plants10020259
Semida, W. M., Abdelkhalik, A., Rady, M. O. A., Marey, R. A., & El-Mageed, T. A. A. (2020). Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Scientia Horticulturae, 272(1), e109580. doi: 10.3389/fpls.2022.897027
Silva, A. A. R. da, Lima, G. S. de, Azevedo, C. A. V. de, Gheyi, H. R., Souza, L. de P., & Veloso, L. L. S. A. (2019b). Gas exchanges and growth of passion fruit seedlings under salt stress and hydrogen peroxide. Pesquisa Agropecuária Tropical, 49(1), e55671. doi: 10.1590/1983-40632019v4955671
Silva, A. M. de S., Neta, Soares, L. A. dos A., Lima, G. S. de, Silva, L. de A., Ferreira, F. N., & Fernandes, P. D. (2020). Morphophysiology of the passion fruit 'BRS Rubi do Cerrado' irrigated with saline waters and nitrogen fertilization. Comunicata Scientiae, 11(1), 3456. doi: 10.14295/cs.v12.3456
Silva, E. M. da, Lima, G. S. de, Gheyi, H. R., Nobre, R. G., Sá, F. V. da S., & Souza, L. de P. (2018). Growth and gas exchanges in soursop under irrigation with saline water and nitrogen sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(11), 776-781. doi: 10.1590/1807-1929/agriambi.v22n11p776-781
Silva, S. S. da, Lima, G. S. de, Lima, V. L. A. de, Gheyi, H. R., Soares, L. A. dos A., & Lucena, R. C. M. (2019a). Gas exchanges and production of watermelon plant under salinity management and nitrogen fertilization. Pesquisa Agropecuária Tropical, 49(1), 1983-4063. doi: 10.1590/1983-40632019v4954822
Skider, R. K., Wang, X., Zhang, H., Gui, H., Dong, Q., Jin, D., & Song, M. (2020). Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum. Plants, 9(1), e450. doi: 10.3390/plants9040450
Soares, L. A. dos A., Fernandes, P. D., Lima, G. S. de, Suassuna, J. F., Brito, M. E. B., & Sá, F. V. da S. (2018). Growth and fiber quality of colored cotton under salinity management strategies. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(5), 332-337. doi: 10.1590/1807-1929/agriambi.v22n5p332-337
Tabssum, F., Zaman, Q. U., Chen, Y., Riaz, U., Ashraf, W., Aslam, A., Ehsan, N., Nawaz, R., Aziz, H., & Shah, S. U. S. (2019). Exogenous application of proline improved salt tolerance in rice through modulation of antioxidant activities. Pakistan Journal of Agricultural Research, 32(1), 140-151. doi: 10.17582/journal.pjar/2019/32.1.140.151
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (vol. 3, n. 1, 3a ed.). EMBRAPA Solos.
Torres, R. A. F., Lima, G. S., Paiva, F. J. S., Soares, L. A. A., Silva, F. A., Silva, L. A., Oliveira, V. K. N., Mendonca, A. J. T., Roque, I. A., & Silva, S. T. A. (2023). Physiology and production of sugar-apple under water stress and application of proline. Brazilian Journal of Biology, 83(1), e273404. doi: 10.1590/1519-6984.273404
Veloso, L. L. S. A., Nobre, R. G., Souza, C. M. A., Fatima, R. T., Souza, L. P., Elias, J. J., Azevêdo, F. L., & Santos, J. B. (2018). Morphophysiology of guava cv. Paluma with water of different salt concentrations and proline doses. Semina: Ciências Agrárias, 39(5), 1877-1886. doi: 10.5433/1679-0359.2018v39n5p1877
Wanderley, J. A. C., Brito, M. E. B., Azevedo, C. A. V. de, Silva, F. C., Ferreira, F. N., & Lima, R. F. (2020). Cell damage and biomass of yellow passion fruit under water salinity and nitrogen fertilization. Revista Caatinga, 33(3), 757-765. doi: 10.1590/1983-21252020v33n319rc
Weatherley, P. E. (1950). Studies in the water relations of the cotton plant. I- The field measurements of water deficits in leaves. New Phytologist, 49(1), 81-97. doi: 10.1111/j.1469-8137.1950.tb05146.x
Zahedi, S. M., Abolhassani, M., Hadian-Delijou, M., Feyzi, H., Akbari, A., Rassouli, F., Koçak, M. Z., & Gohari, G. (2023). Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv Sultana). Plant Stress, 7(1), e100128. doi: 10.1007/s00344-021-10477-1
Zhu, Y., Jiang, X., Zhang, J., He, Y., Zhu, X., Zhou, X., & Liu, Y. (2020). Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry, 156(1), 209-220. doi: 10.1016/j.plaphy.2020.09.014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.











