Recuperação do Material Catódico Aderente ao Coletor e Separador de Baterias de Íons de Lítio Descartadas para Fins de Reciclagem
DOI:
https://doi.org/10.5433/1679-0375.2023.v44.47835Palavras-chave:
bateria de íons de lítio, material catódico, métodos de separação, descarga em soluçãoResumo
Por motivos ambientais e de sustentabilidade, baterias de íon-lítio (BILs) esgotadas devem ser recicladas. A maioria dos processos de reciclagem é dedicada à recuperação de Li, Co, Mn e Ni presentes no material do catodo dos BILs. No entanto, separar o material do catodo fortemente aderente ao coletor de alumínio e aqueles retidos mecanicamente no separador polimérico ainda são desafios. Processos para separar o material do catodo dissolvendo o coletor de alumínio em solução de NaOH e para extrair parte desse material que fica incrustados no separador por cavitação ultrassônica e fricção mecânica são apresentados em testes com baterias NMC, em escala de laboratório. Foram ainda realizados testes de descarregamento de BILs em soluções com diferentes concentrações de MnO4, e discutidas as reações eletroquímicas relacionadas
Downloads
Referências
Asenbauer, J., Eisenmann, T., Kuenzel, M., Kazzazi, A., Chen, Z., & Bresser, D. (2020). The success story of graphite as a lithium-ion anode material: fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy and Fuels, 4(11), 5387–5416. DOI: https://doi.org/10.1039/D0SE00175A
Bae, H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium-ion batteries: A review. Materials Advances, 2(10), 3234–3250. DOI: https://doi.org/10.1039/D1MA00216C
Bai, Y., Essehli, R., Jafta, C. J., Livingston, K. M., & Belharouak, I. (2021). Recovery of Cathode Materials and Aluminum Foil Using a Green Solvent. ACS Sustainable Chemistry and Engineering, 9(17), 6048–6055. DOI: https://doi.org/10.1021/acssuschemeng.1c01293
Chen, T., Jin, Y., Lv, H., Yang, A., Liu, M., Chen, B., Xie, Y., & Chen, Q. (2020). Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University, 26(3), 208–217. DOI: https://doi.org/10.1007/s12209-020-00236-w
Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N., & Li, B. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83–99. DOI: https://doi.org/10.1016/j.jechem.2020.10.017
Ferreira, D. A., Prados, L. M. Z., Majuste, D., & Mansur, M. B. (2009). Hydrometallurgical separation of aluminum, cobalt, copper, and lithium from spent Li-ion batteries. Journal of Power Sources, 187(1), 238–246. DOI: https://doi.org/10.1016/j.jpowsour.2008.10.077
Gaye, N., Gueye, R. S., Ledauphin, J., Balde, M., Seck, M., Wele, A., & Diaw, M. (2019). Alkaline Leaching of Metals from Cathodic Materials of Spent Lithium-Ion Batteries. Asian Journal of Applied Chemistry Research, 1–7. DOI: https://doi.org/10.9734/ajacr/2019/v3i230088
He, Y., Yuan, X., Zhang, G., Wang, H., Zhang, T., Xie, W., & Li, L. (2021). A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Science of the Total Environment, 766, 142382. DOI: https://doi.org/10.1016/j.scitotenv.2020.142382
Hu, H., Xue, W., Jiang, P., & Li, Y. (2022). Polyimide-Based Materials for Lithium-Ion Battery Separator Applications: A Bibliometric Study. International Journal of Polymer Science, 2022(3). DOI: https://doi.org/10.1155/2022/6740710
Hu, Z., Zhu, N., Wei, X., Zhang, S., Li, F., Wu, P., & Chen, Y. (2021). Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries. Journal of Environmental Management, 298, 113500. DOI: https://doi.org/10.1016/j.jenvman.2021.113500
Mahmud, S., Rahman, M., Kamruzzaman, M., Ali, M. O., Emon, M. S. A., Khatun, H., & Ali, M. R. (2022). Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results in Engineering, 15, 100472. DOI: https://doi.org/10.1016/j.rineng.2022.100472
Ojanen, S., Lundström, M., Santasalo-Aarnio, A., & Serna-Guerrero, R. (2018). Challenging the concept of electrochemical discharge using salt solutions for lithium-ion battery recycling. Waste Management, 76, 242–249. DOI: https://doi.org/10.1016/j.wasman.2018.03.045
Shaw-Stewart, J., Alvarez-Reguera, A., Greszta, A., Marco, J., Masood, M., Sommerville, R., & Kendrick, E. (2019). Aqueous solution discharge of cylindrical lithium-ion cells. Sustainable Materials and Technologies, 22, e00110. DOI: https://doi.org/10.1016/j.susmat.2019.e00110
Sita, L. E., dos Santos, C. S., da Silva, S. P., de Faria Lima, A., & Scarminio, J. (2022). A simple process to resynthesize the LiCoO2 and LiNi1/3Co1/3Mn1/3O2 compounds from the cathode material extracted from a batch of spent LCO batteries. Journal of Alloys and Compounds, 894, 162350. DOI: https://doi.org/10.1016/j.jallcom.2021.162350
Sita, L. E., da Silva, S. P., da Silva, P. R. C., Urbano, A., & Scarminio, J. (2015). Optimization of LiCoO2 powder extraction process from cathodes of lithium-ion batteries by chemical dissolution. Semina: Ciências Exatas e Tecnológicas, 36(1), 11–18. DOI: https://doi.org/10.5433/1679-0375.2015v36n1p11
Torabian, M. M., Jafari, M., & Bazargan, A. (2022). Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. Waste Management and Research, 40(4), 402–409. DOI: https://doi.org/10.1177/0734242X211022658
Weng, Y., Xu, S., Huang, G., & Jiang, C. (2013). Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium-ion batteries. Journal of Hazardous Materials, 246–247, 163–172. DOI: https://doi.org/10.1016/j.jhazmat.2012.12.028
Xiao, J., Guo, J., Zhan, L., & Xu, Z. (2020). A Cleaner Approach to the Discharge Process of Spent Lithium-Ion Batteries in Different Solutions. Journal of Cleaner Production, 255, 120064. DOI: https://doi.org/10.1016/j.jclepro.2020.120064
Yao, L. P., Zeng, Q., Qi, T., & Li, J. (2020). An Environmentally Friendly Discharge Technology to Pretreat Spent Lithium-Ion Batteries. Journal of Cleaner Production, 245, 118820. DOI: https://doi.org/10.1016/j.jclepro.2019.118820
Zhan, R., Oldenburg, Z., & Pan, L. (2018). Recovery of Active Cathode Materials from Lithium-Ion Batteries Using Froth Flotation. Sustainable Materials and Technologies, 17, e00062. DOI: https://doi.org/10.1016/j.susmat.2018.e00062
Zhang, J., Li, J., Wang, Y., Sun, M., Wang, L., & Tu, Y. (2023). Separation of Graphites and Cathode Materials from Spent Lithium-Ion Batteries Using Roasting–Froth Flotation. Sustainability (Switzerland), 15(1). DOI: https://doi.org/10.3390/su15010030
Zhong, X., Han, J., Chen, L., Liu, W., Jiao, F., Zhu, H., & Qin, W. (2021). Binding Mechanisms of PVDF in Lithium-Ion Batteries. Applied Surface Science, 553, 149564. DOI: https://doi.org/10.1016/j.apsusc.2021.149564
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Marcelo Henrique Novaes, Paulo Rogério Catarini da Silva, Paulo Sergio Parreira, Gabriel Gonzaga Santos, Lucas Evangelista Sita, Jair Scarminio
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os Direitos Autorais para artigos publicados nesta revista são de direito do autor. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais. A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.