Comparative Analysis of Andiroba Oil obtained by Artisanal and Commercial Process: Fatty Acid Profile and Microencapsulation

Comparative Analysis of Andiroba Oil obtained by Artisanal and Commercial Process: Fatty Acid Profile and Microencapsulation

Authors

DOI:

https://doi.org/10.5433/1679-0375.2024.v45.51534

Keywords:

alginate, essential oil, gelatin, microcapsules, complex coacervation

Abstract

This study aimed to evaluate how the extraction method of andiroba oil interferes with the lipid composition and formation of microcapsules, obtained through the complex coacervation technique. Chromatographic analysis and quantification of triacylglycerols in commercial and artisanal andiroba oils showed high values for saturated and monounsaturated fatty acids, with the commercial oil showing a higher content of polyunsaturated fatty acids. Microencapsulation did not affect the lipid profile of the evaluated oils. Optical and scanning electron microscopy revealed multinucleate microcapsules with well-defined walls, which may provide greater protection to the nucleus. The type of oil used in the formulations affected the
size distribution of the microcapsules, with commercial oil yielding more homogeneous microcapsules, and low polydispersity value. The high encapsulation efficiency
was also observed in commercial oil microcapsules, demonstrating that the origin of the nucleus is important for the formation of better quality microcapsules.

Downloads

Download data is not yet available.

Author Biographies

Joice Camila Martins da Costa, Universidade Estadual de Londrina

Postgraduate Program in Food Engineering, State University of Maringá, Maringá-Paraná, Brazil.

 

Eloíze da Silva Alves, Universidade Estadual de Maringá

Postgraduate Program in Food Science, Maringá State University, Maringá-Paraná, Brazil

Jesuí Vergilio Visentainer, Universidade Estadual de Maringá

 

Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá, Maringá-Paraná, Brazil

 

Andréia Beatriz Divério Mendes, Universidade Estadual de Maringá

Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá-Paraná, Brazil

 

Mônica Regina da Silva Scapim, Universidade Estadual de Maringá

Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Estadual de Maringá, Maringá-Paraná, Brazil

Rita de Cassia Bergamasco, Universidade Estadual de Maringá

Post Graduate Program in Food Engineering, UEM, Maringá-Paraná, Brazil.

References

Alvim, I. D., & Grosso, C. R. F. (2010). Microparticles obtained by complex coacervation: influence of the type of reticulation and the drying process on the release of the core material. Food Science and Technology, 30(4), 1069–1076.

Ambrozin, A. R., Leite, A. C., Bueno, F. C., Vieira, P. C., Fernandes, J. B., Bueno, O. C., Silva, M. F. G. F., Pagnocca, F. C., Hebling, M. J. A., & Bacci, M. J. (2006). Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. Journal of the Brazilian Chemical Society, 17(3), 542–547.

Amoroso, L., Muratore, G., Ortenzi, M. A., Gazzotti, S., Limbo, S., & Piergiovanni, L. (2020). Fast production of cellulose nanocrystals by hydrolytic-oxidative microwave-assisted treatment. Polymers, 12(1), 68.

Antoniosi Filho, N. R., Mendes, O. L., & Lanças, F. M. (1995). Computer prediction of triacylglycerol composition of vegetable oils by HRGC. Chromatographia, 40, 557–562.

Araújo, J. S. F., de Souza, E. L., Oliveira, J. R., Gomes, A. C. A., Kotzebue, L. R. V., Agostini, D. L. S., Oliveira, D. L. V., Mazzetto, S. E., da Silva, A. L., & Cavalcanti, M. T. (2020). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991–999.

Association of Official Analytical Chemists. (2005). Official methods of analysis of the association of official analytical chemists (18th ed.). Gaithersburg.

Bataglion, G. A., da Silva, F. M., Santos, J. M., dos Santos, F. N., Barcia, M. T., de Lourenço, C. C., Salvador, M. J., Godoy, H. T., Eberlin, M. N., & Koolen, H. F. (2014). Comprehensive characterization of lipids from Amazonian vegetable oils by mass spectrometry techniques. Food Research International, 64, 472–481.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

Brito, A. D., Silva, T. F. A., Coelho, R. F. R., & Rosal, L. F. (2020). Saberes e práticas tradicionais da extração do óleo de Carapa guianenses Abul. (andiroba) em área de várzea do município de Igarapé-Mirin, PA. Revista Brasileira de Agroecologia, 15, 110–122.

Cabral, E. C., da Cruz, G. F., Simas, R. C., Sanvido, G. B., Gonçalves, L. D. V., Leal, R. V., da Silva, R. C. F., da Silva, J. C. T., Barata, L. E. S., da Cunha, V. S., França, L. F., Daroda, R. J., de Sá, G. F., & Eberlin, M. N. (2013). Typification and quality control of the andiroba (Carapa guianensis) oil via mass spectrometry fingerprinting. Analytical Methods, 5, 1385–1391.

Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373–379.

Costa-Silva, J. H., Lima, C. R., Silva, E. J. R., Araújo, A. V., Fraga, M. C. C. A., Ribeiro, A. R., Arruda, A. C., Lafayette, S. S. L., & Wanderley, A. G. (2008). Acute and subacute toxicity of the Carapa guianensis Aublet (Meliaceae) seed oil. Journal of Ethnopharmacology, 116(3), 495–500.

De Kruif, C. G., Weinbreck, F., & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340–349.

Devi, N., & Kakati, D. K. (2013). Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering, 117(2), 193–204.

Fayad, S. J., Ramos, B. G., Soldi, V., & Minatti, E. (2015). Nanopartículas de proteína isolada de soja em água: efeito da força iônica e das concentrações de proteína e surfactante. Química Nova, 38, 91–96.

Hijo, A. A. T., Guinosa, R. E., & Silva, E. K. (2022). Ultrasound emulsification energy strategies impact the encapsulation efficiency of essential oils in colloidal systems. Journal of Molecular Liquids, 358, 119179.

Iha, O. K., Alves, F. C., Suarez, P. A., Silva, C. R., Meneghetti, M. R., & Meneghetti, S. M. (2014). Potential application of Terminalia catappa L. and Carapa guianensis oils for biofuel production: Physical-chemical properties of neat vegetable oils, their methyl-esters and bio-oils (hydrocarbons). Industrial Crops and Products, 52, 95–98.

Ilić, I., Dreu, R., Burjak, M., Homar, M., Kerč, J., & Srčič, S. (2009). Microparticle size control and glimepiride microencapsulation using spray congealing technology. International Journal of Pharmaceutics, 381(2), 176–183.

International Organization for Standardization. (2000). Animal and vegetable fats and oils - Preparation of methyl esters of fatty acids. ISO.

Marfil, P. H., Vasconcelos, F. H., Pontieri, M. H., & Telis, V. (2016). Development and validation of analytical method for palm oil determination in microcapsules produced by complex coacervation. Química Nova, 39, 94–99.

Matos, E. F., Scopel, B. S., & Dettmer, A. (2018). Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering, 6(2), 1989–1994.

Muhoza, B., Yuyang, H., Uriho, A., Harindintwali, J. D., Liu, Q., & Li, Y. (2023). Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocolloids, 140, 108650.

Nezamdoost-Sani, N., Amiri, S., & Khaneghah, A. M. (2024). The application of the coacervation technique for microencapsulation bioactive ingredients: A critical review. Journal of Agriculture and Food Research, 18, 101431.

Papini, C. J., Yoshito, W. K., Gouvêa, D., & Neto, R. M. L. (2005). Particle size distribution analysis of an alumina powder: influence of some dispersants, pH and supersonic vibration. Material Science Forum, 498, 73–78.

Pillai, P., & Mandal, A. (2020). A comprehensive micro scale study of poly-ionic liquid for application in enhanced oil recovery: Synthesis, characterization and evaluation of physicochemical properties. Journal of Molecular Liquids, 302, 112553.

Pizzo, J. S., Galuch, M. B., Santos, P. D., Manin, L. P., Zappielo, C. D., Silva, O. J. F., Santos, O. O., & Visentainer, J. V. (2019). Determination of coconut oil adulteration with soybean oil by direct infusion electrospray ionization mass spectrometry. Journal of the Brazilian Chemical Society, 30(7), 1468–1474.

Prata, A. S., & Grosso, C. R. (2015). Influence of the oil phase on the microencapsulation by complex coacervation. Journal of the American Oil Chemists’ Society, 92(7), 1063–1072.

Senhorini, G. A., Zawadzki, S. F., Farago, P. V., Zanin, S. M., & Marques, F. A. (2012). Microparticles of poly (hydroxybutyrate-co-hydroxyvalerate) loaded with andiroba oil: Preparation and characterization. Materials Science and Engineering - C, 32(5), 1121–1126.

Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107, 1800–1810.

Shanley, P., & Londres, M. (2011). Andiroba. Fruit trees and useful plants in Amazonian lives. FAO.

Silva, L., Pinto, J., Carrola, J., & Paiva-Martins, F. (2010). Oxidative stability of olive oil after food processing and comparison with other vegetable oils. Food Chemistry, 121(4), 1177–1187.

Sousa, R. L., Almeida, B. B., Silva, R. P., Albuquerque, L. C. S., & Cordeiro, Y. E. M. (2019). Óleo de andiroba: extração, comercialização e usos tradicionais na comunidade Mamangal, Igarapé-Miri, Pará. Revista Biodiversidade, 18(1), 68–81.

Souza, C. R., Lima, R. M. B., Azevedo, C. P., & Rossi, L. M. B. (2006). Andiroba (Carapa guianensis Aubl.). Embrapa Amazônia Ocidental Documentos, 48, 1–26.

Timilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2017). Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids, 69, 369–381.

Universidade Federal de Goiás. (n.d.). Projetos extras.

Van Hoed, V. (2010). Phenolic compounds in seed oils. Lipid Technology, 22(11), 247–249.

Yang, Z., Peng, Z., Li, J., Li, S., Kong, L., Li, P., & Wang, Q. (2014). Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chemistry, 145, 272–277.

Downloads

Published

2024-12-19

How to Cite

da Costa, J. C. M., Alves, E. da S., Visentainer, J. V., Mendes, A. B. D., Scapim, M. R. da S., & Bergamasco, R. de C. (2024). Comparative Analysis of Andiroba Oil obtained by Artisanal and Commercial Process: Fatty Acid Profile and Microencapsulation. Semina: Ciências Exatas E Tecnológicas, 45, e51534. https://doi.org/10.5433/1679-0375.2024.v45.51534

Issue

Section

Engineerings

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...