Comparative Analysis of Andiroba Oil obtained by Artisanal and Commercial Process: Fatty Acid Profile and Microencapsulation
DOI:
https://doi.org/10.5433/1679-0375.2024.v45.51534Keywords:
alginate, essential oil, gelatin, microcapsules, complex coacervationAbstract
This study aimed to evaluate how the extraction method of andiroba oil interferes with the lipid composition and formation of microcapsules, obtained through the complex coacervation technique. Chromatographic analysis and quantification of triacylglycerols in commercial and artisanal andiroba oils showed high values for saturated and monounsaturated fatty acids, with the commercial oil showing a higher content of polyunsaturated fatty acids. Microencapsulation did not affect the lipid profile of the evaluated oils. Optical and scanning electron microscopy revealed multinucleate microcapsules with well-defined walls, which may provide greater protection to the nucleus. The type of oil used in the formulations affected the
size distribution of the microcapsules, with commercial oil yielding more homogeneous microcapsules, and low polydispersity value. The high encapsulation efficiency
was also observed in commercial oil microcapsules, demonstrating that the origin of the nucleus is important for the formation of better quality microcapsules.
Downloads
References
Alvim, I. D., & Grosso, C. R. F. (2010). Microparticles obtained by complex coacervation: influence of the type of reticulation and the drying process on the release of the core material. Food Science and Technology, 30(4), 1069–1076.
Ambrozin, A. R., Leite, A. C., Bueno, F. C., Vieira, P. C., Fernandes, J. B., Bueno, O. C., Silva, M. F. G. F., Pagnocca, F. C., Hebling, M. J. A., & Bacci, M. J. (2006). Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. Journal of the Brazilian Chemical Society, 17(3), 542–547.
Amoroso, L., Muratore, G., Ortenzi, M. A., Gazzotti, S., Limbo, S., & Piergiovanni, L. (2020). Fast production of cellulose nanocrystals by hydrolytic-oxidative microwave-assisted treatment. Polymers, 12(1), 68.
Antoniosi Filho, N. R., Mendes, O. L., & Lanças, F. M. (1995). Computer prediction of triacylglycerol composition of vegetable oils by HRGC. Chromatographia, 40, 557–562.
Araújo, J. S. F., de Souza, E. L., Oliveira, J. R., Gomes, A. C. A., Kotzebue, L. R. V., Agostini, D. L. S., Oliveira, D. L. V., Mazzetto, S. E., da Silva, A. L., & Cavalcanti, M. T. (2020). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991–999.
Association of Official Analytical Chemists. (2005). Official methods of analysis of the association of official analytical chemists (18th ed.). Gaithersburg.
Bataglion, G. A., da Silva, F. M., Santos, J. M., dos Santos, F. N., Barcia, M. T., de Lourenço, C. C., Salvador, M. J., Godoy, H. T., Eberlin, M. N., & Koolen, H. F. (2014). Comprehensive characterization of lipids from Amazonian vegetable oils by mass spectrometry techniques. Food Research International, 64, 472–481.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.
Brito, A. D., Silva, T. F. A., Coelho, R. F. R., & Rosal, L. F. (2020). Saberes e práticas tradicionais da extração do óleo de Carapa guianenses Abul. (andiroba) em área de várzea do município de Igarapé-Mirin, PA. Revista Brasileira de Agroecologia, 15, 110–122.
Cabral, E. C., da Cruz, G. F., Simas, R. C., Sanvido, G. B., Gonçalves, L. D. V., Leal, R. V., da Silva, R. C. F., da Silva, J. C. T., Barata, L. E. S., da Cunha, V. S., França, L. F., Daroda, R. J., de Sá, G. F., & Eberlin, M. N. (2013). Typification and quality control of the andiroba (Carapa guianensis) oil via mass spectrometry fingerprinting. Analytical Methods, 5, 1385–1391.
Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373–379.
Costa-Silva, J. H., Lima, C. R., Silva, E. J. R., Araújo, A. V., Fraga, M. C. C. A., Ribeiro, A. R., Arruda, A. C., Lafayette, S. S. L., & Wanderley, A. G. (2008). Acute and subacute toxicity of the Carapa guianensis Aublet (Meliaceae) seed oil. Journal of Ethnopharmacology, 116(3), 495–500.
De Kruif, C. G., Weinbreck, F., & de Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science, 9(5), 340–349.
Devi, N., & Kakati, D. K. (2013). Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering, 117(2), 193–204.
Fayad, S. J., Ramos, B. G., Soldi, V., & Minatti, E. (2015). Nanopartículas de proteína isolada de soja em água: efeito da força iônica e das concentrações de proteína e surfactante. Química Nova, 38, 91–96.
Hijo, A. A. T., Guinosa, R. E., & Silva, E. K. (2022). Ultrasound emulsification energy strategies impact the encapsulation efficiency of essential oils in colloidal systems. Journal of Molecular Liquids, 358, 119179.
Iha, O. K., Alves, F. C., Suarez, P. A., Silva, C. R., Meneghetti, M. R., & Meneghetti, S. M. (2014). Potential application of Terminalia catappa L. and Carapa guianensis oils for biofuel production: Physical-chemical properties of neat vegetable oils, their methyl-esters and bio-oils (hydrocarbons). Industrial Crops and Products, 52, 95–98.
Ilić, I., Dreu, R., Burjak, M., Homar, M., Kerč, J., & Srčič, S. (2009). Microparticle size control and glimepiride microencapsulation using spray congealing technology. International Journal of Pharmaceutics, 381(2), 176–183.
International Organization for Standardization. (2000). Animal and vegetable fats and oils - Preparation of methyl esters of fatty acids. ISO.
Marfil, P. H., Vasconcelos, F. H., Pontieri, M. H., & Telis, V. (2016). Development and validation of analytical method for palm oil determination in microcapsules produced by complex coacervation. Química Nova, 39, 94–99.
Matos, E. F., Scopel, B. S., & Dettmer, A. (2018). Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering, 6(2), 1989–1994.
Muhoza, B., Yuyang, H., Uriho, A., Harindintwali, J. D., Liu, Q., & Li, Y. (2023). Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocolloids, 140, 108650.
Nezamdoost-Sani, N., Amiri, S., & Khaneghah, A. M. (2024). The application of the coacervation technique for microencapsulation bioactive ingredients: A critical review. Journal of Agriculture and Food Research, 18, 101431.
Papini, C. J., Yoshito, W. K., Gouvêa, D., & Neto, R. M. L. (2005). Particle size distribution analysis of an alumina powder: influence of some dispersants, pH and supersonic vibration. Material Science Forum, 498, 73–78.
Pillai, P., & Mandal, A. (2020). A comprehensive micro scale study of poly-ionic liquid for application in enhanced oil recovery: Synthesis, characterization and evaluation of physicochemical properties. Journal of Molecular Liquids, 302, 112553.
Pizzo, J. S., Galuch, M. B., Santos, P. D., Manin, L. P., Zappielo, C. D., Silva, O. J. F., Santos, O. O., & Visentainer, J. V. (2019). Determination of coconut oil adulteration with soybean oil by direct infusion electrospray ionization mass spectrometry. Journal of the Brazilian Chemical Society, 30(7), 1468–1474.
Prata, A. S., & Grosso, C. R. (2015). Influence of the oil phase on the microencapsulation by complex coacervation. Journal of the American Oil Chemists’ Society, 92(7), 1063–1072.
Senhorini, G. A., Zawadzki, S. F., Farago, P. V., Zanin, S. M., & Marques, F. A. (2012). Microparticles of poly (hydroxybutyrate-co-hydroxyvalerate) loaded with andiroba oil: Preparation and characterization. Materials Science and Engineering - C, 32(5), 1121–1126.
Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules, 107, 1800–1810.
Shanley, P., & Londres, M. (2011). Andiroba. Fruit trees and useful plants in Amazonian lives. FAO.
Silva, L., Pinto, J., Carrola, J., & Paiva-Martins, F. (2010). Oxidative stability of olive oil after food processing and comparison with other vegetable oils. Food Chemistry, 121(4), 1177–1187.
Sousa, R. L., Almeida, B. B., Silva, R. P., Albuquerque, L. C. S., & Cordeiro, Y. E. M. (2019). Óleo de andiroba: extração, comercialização e usos tradicionais na comunidade Mamangal, Igarapé-Miri, Pará. Revista Biodiversidade, 18(1), 68–81.
Souza, C. R., Lima, R. M. B., Azevedo, C. P., & Rossi, L. M. B. (2006). Andiroba (Carapa guianensis Aubl.). Embrapa Amazônia Ocidental Documentos, 48, 1–26.
Timilsena, Y. P., Wang, B., Adhikari, R., & Adhikari, B. (2017). Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids, 69, 369–381.
Universidade Federal de Goiás. (n.d.). Projetos extras.
Van Hoed, V. (2010). Phenolic compounds in seed oils. Lipid Technology, 22(11), 247–249.
Yang, Z., Peng, Z., Li, J., Li, S., Kong, L., Li, P., & Wang, Q. (2014). Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chemistry, 145, 272–277.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Joice Camila Martins da Costa, Eloíze da Silva Alves, Jesuí Vergilio Visentainer, Andréia Beatriz Divério Mendes, Mônica Regina da Silva Scapim, Rita de Cassia Bergamasco
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.