Carbonation of concretes containing LC³ cements with different supplementary materials

Authors

DOI:

https://doi.org/10.5433/1679-0375.2022v43n2p161

Keywords:

concrete, LC³-50, metakaolin, supplementary cimenticious materials, clinker

Abstract

Due to the clinkerization process during the Portland cement production, large amounts of CO2 are emitted, increasing the effects related to climate change (approximately 5-10% of global CO2 emissions come from cement production), consequently, the seek for alternatives to mitigate these high emissions are necessary. The use of supplementary cementitious materials (SCM) to partial replace of Portand clinker/cement has been the subject of different research, including the use of LC3 cements (Limestone Calcined Clay Cements), where up to 50% of Portland clinker can be replaced, however, cement industry has already used other
supplementary cementitious materials with pozzolanic activities in commercial cements. In this sense, this work evaluates the performance of concretes containing LC3 mixtures with the presence of different SCM (silica fume, fly ash, sugarcane bagasse ash and açaí stone ash) regarding durability issues by carbonation. The results showed that all concretes with LC3 presented higher carbonation fronts in relation to the reference concrete, with Portland cement, due to the lower availability of calcium to react with the CO2 that penetrates into the concrete pores, so the adoption of curing procedures and coatings are recommended.

Author Biographies

Carlos Eduardo Tino Balestra, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Dept. Civil Engineering, UTFPR, Toledo, PR

Gustavo Savaris, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Dept. Civil Engineering, UTFPR, Toledo, PR

Alberto Yoshihiro Nakano, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Depto of Eletronic Engineering, UTFPR, Toledo, PR

Ricardo Schneider, Universidade Tecnológica Federal do Paraná - UTFPr

Prof. Dr., Depto of Chemical and Biotechnological Processes, UTFPR, Toledo, PR

References

ALMENARES, R. S.; VIZCAÍNO, L. M.; DAMAS, S.; MATHIEU, A.; ALUJAS, A.; MARTIRENA, F. Industrial calcination of kaolinitic clays to make reactive pozzolans. Case studies in Construction Materials [s. l.], v. 6, p. 225-232, 2017. DOI: https://doi.org/10.1016/j.cscm.2017.03.005.

ANTONI, M.; ROSSEN, J.; MARTIRENA, F.; SCRIVENER, K. Cement substitution by a combination of metakaolin and limestone. Cement and Concrete Research, Oxford, v. 42, p. 1579-1589, 2012. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006.

APOSTOLOPOULOS, C. A.; DEMIS, S.; PAPADAKIS, V. G. Chloride-induced corrosion of steel reinforcement - mechanical performance and pit depth analysis. Construction and Building Materials, Guildford, v. 38, p. 139-146, 2013. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.087.

AVET, F.; SNELLINGS, R.; DIAZ, A. A.; HAHA, M. B.; SCRIVENER, K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, Oxford, v. 85, p. 1-11, 2016. DOI: http://dx.doi.org/10.1016/j.cemconres.2016.02.015.

BALESTRA, C. E. T.; LIMA, M. G.; SILVA, A. R.; MEDEIROS-JUNIOR, R. A. Corrosion degree effect on nominal and effective strengths of naturally corroded reinforcement. Journal of Materials in Civil Engineering, [Stevenage], v. 28, n. 10, p. 1-9, 2016. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001599.

BALESTRA, C. E. T.; NAKANO, A. Y.; SAVARIS, G.; MEDEIROS-JUNIOR, R. A. Reinforcement corrosion risk of marine concrete structures evaluated through electrical resistivity: Proposal of parameters based on field structures. Ocean Engineering, [Glasgow], v. 187, p. 1-13, 2019. DOI: https://doi.org/10.1016/j.oceaneng.2019.106167.

BEM, D. H.; LIMA, D. P. B.; MEDEIROS-JUNIOR, R.A. Effect of chemical admixtures on concrete´s electrical resistivity. International Journal of Building Pathology and Adaptation, Bingley, v. 36, n. 2, p. 174-187,2018. DOI: http://doi.org/10.1108/IJBPA-11-2017-0058.

BERRIEL, S. S.; FAVIER, A.; DOMÍNGUEZ, E. R.;MACHADO, I. R. S.; HEIERLI, U.; SCRIVENER, K.; HERNÁNDEZ, F. M.; HABERT, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. Journal of Cleaner Production, Oxford, v. 124, p. 361-369, 2016. DOI: http://dx.doi.org/10.1016/j.jclepro.2016.02.125.

BUCHER, R.; DIEDERICH, P.; ESCADEILLAS, G. CYR, M. Service life of metakaolin-based concrete exposed to carbonation - Comparison with blended cement containing fly ash, blast furnance slag and limestone filler. Cement and Concrete Research, Oxford, v. 99, p. 18-29, 2017. DOI: http://doi.org/10.1016/j.cemconres.2017.04.013.

CHEN, C. T.; CHANG, J. J.; YEIH, W. C. The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials, Guildford, v. 71, n. 30, p. 35-43, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.009.

CEB - COMITÉ EURO-INTERNATIONAL DU BÉTON. Durable concrete structures. 2. nd. Lausanne: Telford Services, 1992. (Bulletin D' Information, n. 183).

COSTA JUNIOR, M.P.; PINHEIRO, S.M.M. Durabilidade de concreto armado sob condições de carregamento e cura em ambiente marinho. Semina: Ciências Exatas e Tecnológicas, Londrina, , n. 40, v. 2, p. 145-153, 2019. DOI: https://doi.org/10.5433/1679-0375.2019v40n2p145.

DHANDAPANI, Y.; SANTHANAM, M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cement and Concrete Composites, Amsterdam, v. 84, p. 36-47, 2017. DOI: http://dx.doi.org/10.1016/j.cemconcomp.2017.08.012.

DU, H.; PANG, S.D. High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, Guildford, v. 264, n. 20, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120152.

FERREIRO, S.; HERFORT, D.; DAMTOFT, J. S. Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay - Limestone Portland cements. Cement and Concrete Research, Oxford, v. 101, p. 1-12, 2017. DOI: https://doi.org/10.1016/j.cemconres.2017.08.003.

HAN, S. H.; PARK, W. S.; YANG, E. I. Evaluation of concrete durability due to carbonation in harbor concrete structures. Construction and Building Materials, Guildford, v. 48, p. 1045-1049, 2013. DOI: http://doi.org/10.1016/j.conbuildmat.2013.07.057.

HORNBOSTEL, K.; LARSEN, C. K.; GEIKER, M. R. Relationship between concrete resistivity and corrosion rate: a literature review. Cement and Concrete Composites, Amsterdam, v. 39, p. 60-72, 2013. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.019.

HOU, T. C.; NGUYEN, V. K.; SU, Y. M.; CHEN, Y. R.; CHEN, P. J. Effects of coarse aggregates on the electrical resistivity of Portland cement concrete. Construction and Building Materials, Guildford, v. 133, n. 15, p. 397-408, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.044.

KHAN, I.; FRANÇOIS, R.; CASTEL, A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cement and Concrete Research, Oxford, v. 56, p. 84-96, 2014. DOI: https://doi.org/10.1016/j.cemconres.2013.11.006.

KRISHNAN, S.; BISHNOI, S. A numerical approach for designing composite cements with calcined clay and limestone. Cement and Concrete Research, Oxford, v. 138, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106232.

MEDEIROS-JUNIOR, R. A.; LIMA, M. G. Electrical resistivity of unsaturated concrete using different types of cement. Construction and Building Materials, Guildford, v. 107, p. 11-16, 2016. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.168.

MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: Microstructure, properties and Materials. 3.rd ed. New York: Mc-Graw Hill, 2006.

MURAKAMI, F.F.E.; FERREIRA, E.O.; BALESTRA, C.E.T.; SAVARIS, G. Tensile strength of corroded steel bars. Semina: Ciências Exatas e Tecnológicas. Londrina, v. 42, n.1, p. 103-112, 2021. DOI: https://doi.org/10.5433/1679-0375.2021v42n1p103.

NAIR, N.; HANEEFA, K. M.; SANTHANAM, M.; GETTU, R. A. study on fresh properties of limestone calcined clay blended cementitious systems. Construction and Building Materials, Guildford, v. 254, n. 10, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119326.

NEVILLE, A. M. Properties of Concrete. 5.th ed. New York: Prentice Hall, 2012.

PAUL, S. C.; PANDA, B.; HUANG, Y.; GARG, A.; PENG, X. An empirical model design for evaluation and estimation of carbonation depth in concrete. Measurement, London, v. 124, p. 205-210, 2018. DOI: http://doi.org/10.1016/j.measurement.2018.04.033.

REHMAN, S.; AL-HADHRAMI, L. M. Web-based national corrosion cost inventory system for Saudi Arabia. Anti Corrosion Methods and Materials, Bingley, v. 61, n. 2, p. 77-92, 2014. DOI: https://doi.org/10.1108/ACMM-04-2013-1254.

RILEM RECOMMENDATIONS. CPC-18 measurement of hardened concrete carbonation depth. Materials and Structures, Dordrecht, v. 21, p. 453-455, 1988.

RODRIGUEZ, C.; TOBON, J. I. Influence of calcined clay/limestone, sulfate and clinker proportions on cement performance. Construction and Building Materials, Guildford, v. 251, n. 10, p. 1-8, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119050.

SCRIVENER, K.; AVET, F.; MARAQHECHI, H.; ZUNINO, F.; STON, J.; HANPONGPUN, W.; FAVIER, A. Impacting factors and properties of limestone calcined clay cements (LC³). Green Materials, Westminster, v. 7, n. 1, p. 3-14, 2019. DOI: https://doi.org/10.1680/jgrma.18.00029.

SCRIVENER, K.; MARTIRENA, F.; BISHNOI, S.; MAITY, S. Calcined clay limestone cements (LC³). Cement and Concrete Research, Oxford, v. 114, p. 49-56, 2018. DOI: https://doi.org/10.1016/j.cemconres.2017.08.017.

SENGUL, O. Use of electrical resistivity as an indicator for durability. Construction and Building Materials, Guildford, v. 73, n. 30, p. 434-441, 2014. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.077.

SHI, C.; HE, T.; ZHANG, G.; WANG, X.; HU, Y. Effects of superplasticizers on carbonation resistance of concrete. Construction and Building Materials, Guildford, v. 108, n. 1, p. 48-55, 2016. DOI: http://doi.org/10.1016/j.conbuildmat.2016.01.037.

SILVA, R. A.; NEVES, R.; DE BRITO, J.; DHIR, R. K. Carbonation behavior of recycled aggregate concrete. Cement and Concrete Composites, Amsterdam, v. 62, p. 22-32, 2015. DOI: http://doi.org/10.1016/j.cemconcomp.2015.04.017.

TALUKDAR, S.; BANTHIA, N. Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model. Construction and Building Materials, Guildford, v. 40, p. 775-782, 2013. DOI: http://doi.org/10.1016/j.conbuildmat.2012.11.026.

YU, B.; LIU, J.; CHEN, Z. Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity. Construction and Building Materials, Guildford, v. 138, n. 1, p. 101-113, 2017. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.100.

YU, J.; WU, H. L.; MISHRA, D. K.; LI, G. Compressive strength and environmental impact of sustainable blended cement with high-dosage Limestone and Calcined Clay (LC2). Journal of Cleaner Production, Amsterdam, v. 278, 2021. DOI: https://doi.org/10.1016/j.jclepro.2020.123616.

ZARIBAF, B. H.; UZAL, B.; KURTIS, K. Compatibility of superplasticizers with limestone-metakaolin blended cementitious system. In: SCRIVENER, K.; FAVIER, A. (ed.). Calcined Clays for Sustainable Concrete. Berlim: Springer, 2015. p 427-434. (RILEM Bookseries 10). DOI: http://dx.doi.org/10.1007/978-94-017-9939-3_53.

ZHANG, D.; JAWORSKA, B.; ZHU, B.; DAHLQUIST, K.; LI, V. C. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3). Cement and Concrete Composites, Amsterdam, v. 114, p. 1-28, 2020. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103766.

Downloads

Published

2022-12-27

How to Cite

Balestra, C. E. T., Savaris, G., Nakano, A. Y., & Schneider, R. (2022). Carbonation of concretes containing LC³ cements with different supplementary materials. Semina: Ciências Exatas E Tecnológicas, 43(2), 161–170. https://doi.org/10.5433/1679-0375.2022v43n2p161

Issue

Section

Original Article

Most read articles by the same author(s)