In vitro viability of bovine semen cryopreserved with addition of vitamin c and trolox to the extender medium
DOI:
https://doi.org/10.5433/1679-0359.2024v45n5p1349Keywords:
Antioxidants, Oxidative stress, Plasma membrane, Sperm kinetics, Sperm.Abstract
A cryopreservation of bovine semen contributes significantly to the milk and meat production chains, improving the efficiency of herds and, consequently, their profitability. In this context, different methods and additives are used for this process to improve sperm resistance to cryopreservation. The objective of this work was to evaluate the use of ascorbic acid (vitamin C) and Trolox (synthetic vitamin E) as antioxidants in the semen extender medium to preserve bull semen viability in the freezing-thawing process. Eight sires, five Bos taurus indicus and three Bos taurus taurus, were selected and subjected to three semen collections at 48-hour intervals. The ejaculates were subjected to a previous analysis of motility, vigor, and concentration, then put into 0.25 mL straws at a rate of 25×106 of viable sperm, and distributed into four groups: Group I (extended semen); Group II (semen extended with 250 μM mL-1 of Trolox); Group III (semen extended with 0.60 mg mL-1 of vitamin C); and Group IV (semen extended with 250 μM mL-1 of Trolox and 0.60 mg mL-1 of vitamin C); subsequently, they were subjected to cryopreservation. The movements and kinetics of the thawed sperm was analyzed using Computer-Assisted Semen Analysis (CASA), which showed no difference (p<0.05) between the treatments. The evaluation of sperm viability by flow cytometry and lipid peroxidation by Thiobarbituric Acid Reactive Substances (TBARS) also showed no differences (p<0.05) between the antioxidants used in the extended semen. The semen of group GIV presented 35.08% motility, evaluated by Thermal Resistance Test (TRT); and 49.41% plasma membrane integrity, quantified by Hypo-Osmotic Swelling Test (HOST). These values were higher (p<0.05) than those found for the semen of groups GI (29.83% and 42%), GII (30.66% and 43.85%), and GIII (32.41% and 46.68%), respectively, which presented no differences from each other (p>0.05). The interaction between Trolox and vitamin C generated significant results for sperm motility after thawing when evaluated through TRT, and sperm viability when evaluated through HOST, and were higher than those found in the control group and in the group with addition of vitamin C.
Downloads
References
Agarwal, A., & Sekhon, L.H. (2011). Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: Is it justified? Indian Journal of Urology, 27, 74-85. https://pubmed.ncbi.nlm.nih.gov/21716893/. doi: 10.4103/0970-1591.78437. DOI: https://doi.org/10.4103/0970-1591.78437
Agarwal, A. Durairajanayagam, D., & Du Plessis, S.S. (2014). Utility of antioxidants during assisted reproductive techniques: an evidence-based review. Reproductive Biology and Endocrinology, 12, 1-12. https://pubmed.ncbi.nlm.nih.gov/25421286/. doi: 10.1186/1477-7827-12-112. DOI: https://doi.org/10.1186/1477-7827-12-112
Aitken, R.J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular Reproduction and Development, 84, 039-1052. https://pubmed.ncbi.nlm.nih.gov/28749007/. doi: 10.1002/mrd.22871. DOI: https://doi.org/10.1002/mrd.22871
Anchieta, M.C., Vale Filho, V.R., Colosimo, E., Sampaio, I.B.M., & Andrade, V.J. (2005). Descarte e congelabilidade do sêmen de touros de raças zebuínas e taurinas em central de inseminação artificial no Brasil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia , 57, 196-204. https://doi.org/10.1590/S0102-09352005000200010. DOI: https://doi.org/10.1590/S0102-09352005000200010
Arguello, F.A.P.B., Zervoudakis, L.K., Zervoudakis, J.T., Duarte Júnior, M.F., Tsuneda, P.P., Marinho, W.A.S., Senra Silva, L.E., Moraes, J.O., & Barbosa, E.A. (2017). Effect of oral supplementation of selenium and tocopherol on the spermatic plasma membrane in Brangus bulls. Revista Brasileira de Ciência Veterinária , 24, 157-161. https://www.cabdirect.org/cabdirect/abstract/20183153726. doi: 10.4322/rbcv.2017.030. DOI: https://doi.org/10.4322/rbcv.2017.030
Arruda, R.P., Silva, D.F., Affonso, F.J., Lemes, K.M., Jaimes, J.D., Celeghini, E.C.C., Alonso, M.A., Carvalho, H.F., Oliveira, L.Z., & Nascimento, J. (2011). Métodos de avaliação da morfologia e função espermática: momento atual e desafios futuros. Revista Brasileira de Reprodução Animal, 35, 145-151. http://cbra.org.br/br/.
Batool, A., Mehboob, K., Qadeer, S., Ansari, M.S., Rakha, B.A., Ullah, N., Andrabi, S.M.H., & Akhter, S. (2012). Effect of α-Tocopherol Acetate and Ascorbic Acid in Extender on Quality of Zebu Bull Spermatozoa. Pakistan Journal of Zoology, 44, 1487-1491. https://agris.fao.org/agris-search/search.do?recordID=PK2013001178.
Beheshti, R., Asadi, A., & Maheri-sis, N. (2011). The effect of vitamin E on post-thawed buffalo bull sperm parameters. The Journal of American Science, 7, 227-231. http://www.americanscience.org.
Borges-Silva, J.C., Silva, M.R., Marinho, D. B., Nogueira, E., Sampaio, D.C., Oliveira, L.O.F., Abreu, U.G.P, Mourao, G.B., & Sartori, R. (2015). Cooled semen for fixed-time artificial insemination in beef cattle. Reproduction, Fertility and Development, 28, 1004-1008. https://pubmed.ncbi.nlm.nih.gov/25562326/. doi: 10.1071/RD14185. DOI: https://doi.org/10.1071/RD14185
Bertol, M.A.F., Weiss, R.R., Fujita, A.S., Kozicki, L.E., Abreu, A.C.M.R., & Pereira, J.F.S. (2014). Dois diluentes comerciais na criopreservação de espermatozoides do epidídimo de touros. Ciência Rural, 44, 1658-1663. https://doi.org/10.1590/0103-8478cr20130747. DOI: https://doi.org/10.1590/0103-8478cr20130747
Duarte Junior, M.F., Zervoudakis, L.K.H., Zervoudakis, J.T., Nichi, M.M., Bertolla, R.P., Tsuneda, P.P., Silva, L.E.S., Wingert, F.M., & Marinho, W.A.S. (2015). Tocopherol evaluations at the freezing of bovine semen on the pregnancy rates after fixed time artificial insemination. Revista Brasileira de Ciência Veterinária, 22, 114-118. https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1008341?src=similardocs. DOI: https://doi.org/10.4322/rbcv.2015.362
Duarte Junior, M.F., Zervoudakis, L.K.H., Zervoudakis, J.T., Nichi, M.M., Silva, L.E.S., Tsuneda, P.P., Arguello, F.A.P.B., & Losano, J.D.A. (2016). Utilização de pentoxifilina e antioxidantes na criopreservação do sêmen bovino: qualidade seminal e estresse oxidativo. Ars Veterinaria , 32, 110-116. https://pesquisa.bvsalud.org/portal/resource/pt/vti-16053. DOI: https://doi.org/10.15361/2175-0106.2016v32n2p110-116
Gangwar, C., Kharche, S.D., Ranjan, R., Kumar. S., Goel, A.K., Jindal, S.K., & Agarwal, S.K. (2015). Effect of vitamin C supplementation on freezabilitu of Barbari buck sêmen. Small Ruminant Research Journal, 129, 104-107. https://doi.org/10.1016/j.smallrumres.2015.06.002. DOI: https://doi.org/10.1016/j.smallrumres.2015.06.002
Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J.P., & Bollwein, H. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86, 562–571. https://pubmed.ncbi.nlm.nih.gov/27039074/. doi: 10.1016/j.theriogenology.2016.02.007. DOI: https://doi.org/10.1016/j.theriogenology.2016.02.007
Hossain, M.S., Johannisson, A., Wallgren, M., Nagy, S., Siqueira, A.P., & Rodriguez-Martinez, H. (2011). Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian Journal of Andrology, 13, 406–419. https://pubmed.ncbi.nlm.nih.gov/21478895/. doi: 10.1038/aja.2011.15. DOI: https://doi.org/10.1038/aja.2011.15
Hu, J.H., Tian, Q.W., Zhao, X.L., Zan, L.S., Wang, H., Li, Q.W., & Xin, Y.P. (2010). The cryoprotective effects of ascorbic acid supplementation on bovine semen quality. Animal Reproduction Science, 121, 72-77. https://pubmed.ncbi.nlm.nih.gov/20478670/. doi: 10.1016/j.anireprosci.2010.04.180. DOI: https://doi.org/10.1016/j.anireprosci.2010.04.180
Hu, J.H., Zhao X.L., Tian, Q.W., Zan, L.S., & Li, Q.W. (2011). Effects of vitamin E supplementation in the extender on frozen-thawed bovine semen preservation. Animal, 5, 07–112. https://pubmed.ncbi.nlm.nih.gov/22440709/. doi: 10.1017/S1751731110001679. DOI: https://doi.org/10.1017/S1751731110001679
Khellouf, A., Banhenia, K., Fatmi, S., & Iguer-Ouada, M. (2018). The complementary effect of cholesterol and vitamin e preloaded in cyclodextrins on frozen bovine semen: motility parameters, membrane integrity and lipid peroxidation. CryoLetters, 39, 113-120. https://pubmed.ncbi.nlm.nih.gov/29734420/.
Leite, P.A., Schreder, G.G., Almeida, C.L.R., Zúccari, C.E.S.N., & Silva, E.V.C. (2011). Criopreservação do Sêmen Bovino. UNOPAR Cientifíca Ciências biológicas e da saúde, 13, 279-86. https://journalhealthscience.pgsskroton.com.br/article/download/1147/1107.
Milazzotto, P., Visintin, J.Á., & Assumpção, M.O.E.D. (2008). Biotecnologias da reprodução animal: biologia molecular aplicada à biotecnologia. Ciência Veterinária nos Trópicos, 11, 145-148. https://www.bvs-vet.org.br/vetindex/periodicos/ciencia-veterinaria-nos-tropicos/11-(2008)/.
Mahfouz, R., Sharma, R., Sharma, D., Sabanegh, E., & Agarwal, A. (2009). Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertility and Sterility, 91, 805-811. https://pubmed.ncbi.nlm.nih.gov/18314108/. doi: 10.1016/j.fertnstert.2008.01.022. DOI: https://doi.org/10.1016/j.fertnstert.2008.01.022
Mortimer, S.T., & Maxwell, W.M.C. (2004). Effect of medium on the kinematics of frozen-thawed ram spermatozoa. Reproduction, 127, 285–291. https://pubmed.ncbi.nlm.nih.gov/15056794/. doi: 10.1530/rep.1.00075. DOI: https://doi.org/10.1530/rep.1.00075
Motemani, M., Chamani, M., Sharafi, M., & Masoudi, R. (2017). Alpha-tocopherol improves frozen-thawed sperm quality by reducing hydrogen peroxide during cryopreservation of bull sêmen. Spanish Journal of Agricultural Research, 15, 7. https://doi.org/10.5424/sjar/2017151-9761. DOI: https://doi.org/10.5424/sjar/2017151-9761
Nichi, M., Bols, P.E.J., Zuge, R.M., Barnabe, V.H., Goovaerts, I.G.F., Barnabe, R.C., & Cortada, C.N.M. (2006). Seasonal variation in sêmen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology, 66, 822-828. https://pubmed.ncbi.nlm.nih.gov/16529802/. doi: 10.1016/j.theriogenology.2006.01.056. DOI: https://doi.org/10.1016/j.theriogenology.2006.01.056
Oliveira, L.Z., Arruda, R.P., Andrade, A.F.C., Celeghini, E.C.C., Reeb, P.D., Martins, J.P.N., Santos, R.M., Beletti, M.E., Peres, R.F.G., Monteiro, F.M., & Lima, V.F.M.H. (2013). Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Animal Reproduction Science, 137, 145–155. https://pubmed.ncbi.nlm.nih.gov/23428291/. doi: 10.1016/j.anireprosci.2013.01.010. DOI: https://doi.org/10.1016/j.anireprosci.2013.01.010
Oliveira, W., Mota, M.F., Pinto Neto, A., & Becher, B.G. (2018). Criopreservação de sêmen e emprego de vitaminas no meio diluidor: revisão de literatura. Scientific Electronic Archives, 11, 145-152. http://www.seasinop.com.br/revista/index.php?journal=SEA&page=article&op=view&path%5B%5D=719&path%5B%5D=pdf.
Papa, M.P., Maziero, R.M., Guasti, P.N., Junqueira, C.R., Freitasdell’Aqua, C.P., Papa, F.O., Papa, F.O., Viana, F.P., Alvarenga, M.A., & Papa, F.O. (2015). Effect of glycerol on the viability and fertility of cooled bovine semen. Theriogenology, 83, 107-113. https://pubmed.ncbi.nlm.nih.gov/25441498/. doi: 10.1016/j.theriogenology.2014.08.009. DOI: https://doi.org/10.1016/j.theriogenology.2014.08.009
Schober, D., Aurich, C., Nohl, H., & Gille, L. (2007). Influence of cryopreservation on mitochondrial functions in equine spermatozoa. Theriogenology, 68, 745-754. https://pubmed.ncbi.nlm.nih.gov/17644168/. doi: 10.1016/j.theriogenology.2007.06.004. DOI: https://doi.org/10.1016/j.theriogenology.2007.06.004
Sellem, E., Broekhuijse, M.L., Chevrier, L., Camugli, S., Schmitt, E., Schibler, L., & Koenen, EP. (2015). Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology, 84, 1447–54. https://doi.org/10.1016/j.theriogenology.2015.07.035. DOI: https://doi.org/10.1016/j.theriogenology.2015.07.035
Silva, E.C.B., & Guerra, M.M.P. (2011). Efeitos da criopreservação sobre as células espermáticas e alternativas para redução das crioinjúrias. Revista Brasileira de Reprodução Animal, 35, 370-384. https://www.bvs-vet.org.br/vetindex/periodicos/revista-brasileira-de-reprodução-animal/35-(2011) 4/efeitos-da-criopreservacao-sobre-as-celulas-espermaticas-e-alternativa/.
Silva, L.F.M.C., Araujo, E.A.B., Oliveira, S.N., Dalanezi, F.M., Andrade Junior, L.R.P., Souza, F.F., & Crespilho, A.M. (2017). Mecanismos de ação dos principais antioxidantes utilizados na criopreservação espermática de garanhões. Veterinária e Zootecnia, 24, 418-434. https://doi.org/10.35172/rvz.2017.v24.277. DOI: https://doi.org/10.35172/rvz.2017.v24.277
Souza, W.L., Moraes, E.A., & Toniolli, R. (2017). Addition of antioxidants in ram semen and the effects after thawing. Pesquisa Veterinária Brasileira, 37, 471-475. https://doi.org/10.1590/S0100-736X2017000500008. DOI: https://doi.org/10.1590/s0100-736x2017000500008
Souza, E.S., Zervoudakis, L.K., Motheo, T.F., Silva, L.E.S., & Marinho, W.A.S. (2019). Addition of vitamin E to semen cryopreservation medium of pantaneiro breed cattle. Investigação, 18, 45-49. https://publicacoes.unifran.br/index.php/investigacao/article/view/3289/1026.
Tironi, S.M.T., Martinez, A.C., Seixas, F.A.V., Stefanello, T.F., Nakamura, C.V., & Moraes, G.V. (2019). Effects of Treatment with Quercetin on the Quality of Cryopreserved Bovine. Acta Scientiae Veterinariae, 47, 1635. https://doi.org/10.22456/1679-9216.90279. DOI: https://doi.org/10.22456/1679-9216.90279
Verstegen, J., Iguer-Ouada, M., & Onclin, K.. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology, 57, 149-179. https://pubmed.ncbi.nlm.nih.gov/11775967/. doi: 10.1016/s0093-691x(01)00664-1. DOI: https://doi.org/10.1016/S0093-691X(01)00664-1
Wahjuningsih, S., & Rachmawat, A. (2012). The Effect of α-tocopherol on Plasma Membrane Integrity of Goat Spermatozoa. Journal of Basic Sciences and Applied Research, 2, 8857-8860. http://www.textroad.com/.
Zhao, X.L., Cao, S., Hu, J.H., Wang, W.H., Hao, R.J., Gui, L.S., & Zan, L.S. (2015). Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls. Genetics and Molecular Research, 1, 2572 – 2581. https://pubmed.ncbi.nlm.nih.gov/25867404/. doi: 10.4238/2015.30.mar.16. DOI: https://doi.org/10.4238/2015.March.30.16
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 William de Oliveira, Marcelo Falci Mota, Adalgiza Pinto Neto , Dalila Moter Benvegnú, Jonatas Cattelam, Antonio Campanha Martinez, Camila Keterine Gorzelanski Trenkel, Matheus Ramos Rosin, Neimar Correa Severo, João Pedro Brandão Zandonaide

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.