Suitability of the electrical conductivity test and antioxidant enzyme activity to assess the vigor of lentil (Lens culinaris Medik.) seeds
DOI:
https://doi.org/10.5433/1679-0359.2024v45n3p799Keywords:
Physiological potential, Methodology, Soaking period, Antioxidant system, Enzyme activity.Abstract
Adapting methodologies that enable the assessment of lentil seed vigor is of utmost importance to ensure the marketing of lots with outstanding field performance. This study aimed to define the appropriate conditions for conducting the electrical conductivity test for lot classification according to vigor and assess whether the activity of antioxidant enzymes is related to the physiological potential of lentil seeds. For this, seeds from seven lots of the cultivar Silvina were subjected to different tests to characterize their initial quality, and the results were compared with those obtained in the electrical conductivity test and enzyme activity. Four soaking periods (4, 8, 12, and 24 h) associated with three water volumes (75, 100, and 150 mL) at 25 °C were used to assess electrical conductivity. The SOD, CAT, and APX enzymes were also assessed. The electrical conductivity test and enzyme activity were efficient in assessing the physiological potential with information related to other vigor tests. The electrical conductivity test conducted with 50 seeds immersed in 75 mL of water at 25 °C for 24 h allowed the separation of lots into vigor levels. The activity of CAT, SOD, and APX enzymes can be related to the physiological potential of lentil seeds.
Downloads
References
Anderson, M. D., Prasad, T. K., & Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotylus of maize seedlings. Plant Physiology, 109(4), 1247-1257. doi: 10.1104/pp.109.4.1247 DOI: https://doi.org/10.1104/pp.109.4.1247
Araújo, J. O., Dias, D. C. F. S., Miranda, R. M., & Nascimento, W. M. (2022). Adjustment of the electrical conductivity test to evaluate the seed vigor of chickpea (Cicer arietinum L.). Journal of Seed Science, 44(2), e202244003. doi: 10.1590/2317-1545v44258666 DOI: https://doi.org/10.1590/2317-1545v44258666
Araújo, J. O., Dias, D. C. F. S., Nascimento, W. M., Martins, A. O., & Limão, M. A. R. (2021). Accelerated aging test and antioxidant enzyme activity to assess chickpea seed vigor. Journal of Seed Science, 43(1), e202143038. doi: 10.1590/2317-1545v43253934 DOI: https://doi.org/10.1590/2317-1545v43253934
Araújo, R. F., Abud, H. F., Silva, L. J., Araújo, E. F., Pinto, C. M. F., & Silva, F. W. S. (2018). Physiological changes and antioxidant enzymes activity in Biquinho and Malagueta pepper seeds during the maturation process. Revista Ceres, 65(6), 534-545. doi: 10.1590/0034-737X201865060009 DOI: https://doi.org/10.1590/0034-737x201865060009
Araújo, R. F., Zonta, J. B., & Fontes, E. (2011). Teste de condutividade elétrica para sementes de feijão-mungo-verde. Revista Brasileira de Sementes, 33(1), 123-130. doi: 10.1590/S0101-31222011000100014 DOI: https://doi.org/10.1590/S0101-31222011000100014
Baalbaki, R., Elias, S., Marcos, J., Fº., & Mcdonald, M. B. (2009). Seed vigor testing handbook. AOSA.
Bandeira, J. M., Marini, P., Borba, I. C. G., Martins, A. B. N., Amarante, L., & Moraes, D. M. (2014). Antioxidative metabolism: a tool to detect small differences in the vigor of soybean seeds. Iheringia, 69(2), 285-292. http://isb.emnuvens.com.br/iheringia/article/view/92/99
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. doi: 10.1016/0003-2697(71)90370-8 DOI: https://doi.org/10.1016/0003-2697(71)90370-8
Bewley, J. D., & Black, M. (1994). Seeds: physiology of development and germination. Plenum Press. DOI: https://doi.org/10.1007/978-1-4899-1002-8
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quanti-ties of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(2), 248-254. doi: 10.1006/abio.1976.9999 DOI: https://doi.org/10.1006/abio.1976.9999
Chaffai, R. R., Marzouk, B., & Ferjani, E. E. (2005). Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Phytochemistry, 66(16), 903-1912. doi: 10.1016/j.phytochem.2005.06.028 DOI: https://doi.org/10.1016/j.phytochem.2005.06.028
Cicero, S. N., & Vieira, R. D. (2020). Teste de frio. In F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, & J. Marcos Fº. (Eds.), Vigor de sementes: conceitos e testes (pp. 277-307, Cap. 6). Londrina.
Dalanhol, S. J., Rezende, E. H., Abreu, D. C. A., & Nogueira, A. C. (2014). Teste de condutividade elétrica em sementes de Bowdichia virgilioides Kunth. Floresta e Ambiente, 21(1), 69-77. doi: 10.4322/floram.2014.013 DOI: https://doi.org/10.4322/floram.2014.013
Del Longo, O. T., González, A., Pastori, G. M., & Trippi, V. (1993). Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiology, 34(7), 1023- 1028. doi: 10.1093/oxfordjournals.pcp.a078515 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a078515
Deuner, C., Maia, M. S., Deuner, S., Almeida, A., & Meneghello, G. E. (2011). Viabilidade e atividade antioxidante de sementes de genótipos de feijão-miúdo submetidos ao estresse salino. Revista Brasileira de Sementes, 33(4), 711-720. doi: 10.1590/S0101-31222011000400013 DOI: https://doi.org/10.1590/S0101-31222011000400013
Dias, D. C. F. S., & Marcos, J., Fº. (1996). Testes de condutividade elétrica para avaliação do vigor de sementes de soja (Glycine max L. Merrill). Scientia Agricola, 53(1), 1-9. doi: 10.1590/S0103-90161996000100005 DOI: https://doi.org/10.1590/S0103-90161996000100005
Ebone, L. A., Caverzan, A., & Chavarria, G. (2019). Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 145(19), 34-42. doi: 10.1016/j.plaphy.2019.028 DOI: https://doi.org/10.1016/j.plaphy.2019.10.028
Ferreira, L. B. S., Fernandes, N. A., Aquino, L. C., Silva, A. R., Nascimento, W. M., & Leão-Araújo, E. F. (2017). Temperature and seed moisture content affect electrical conductivity test in pea seeds. Journal of Seed Science, 39(4), 410-416. doi: 10.1590/2317-1545v39n4181021 DOI: https://doi.org/10.1590/2317-1545v39n4181021
Fessel, S. A., Panobianco, M., Souza, C. R., & Vieira, R. D. (2010). Teste de condutividade elétrica em sementes de soja armazenadas sob diferentes temperaturas. Bragantia, 69(1), 207-214. doi: 10.1590/S0006-87052010000100026 DOI: https://doi.org/10.1590/S0006-87052010000100026
Figueiredo, J. C., David, A. M. S. S., Silva, C. D., Soares, L. M., Pereira, K. K. G., Silva, R. A., & Alves, R. A. (2021). Teste de condutividade elétrica em sementes de linho. Investigacion Agraria, 23(2), 81-85. doi: 10.18004/investig.agrar.2021.diciembre.2302686 DOI: https://doi.org/10.18004/investig.agrar.2021.diciembre.2302686
Gomes, M. P., & Garcia, Q. S. (2013). Reactive oxygen species and seed germination. Biologia, 68(3), 351-357. doi: 10.2478/s11756-013-0161-y DOI: https://doi.org/10.2478/s11756-013-0161-y
Havir, E. A., & Mchale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84(2), 450-455. doi: 10.1104/pp.84.2.450 DOI: https://doi.org/10.1104/pp.84.2.450
Krzyzanowski, F. C., França, J. B., Neto, Gomes, F. G., Jr., & Nakagawa, J. (2020). Teste de vigor baseados em desempenhos de plântulas. In F. C. Krzyzanowski, R. D. Vieira, & França, J. B. Neto. (Eds.), Vigor de sementes: conceitos e testes (pp. 79-127, cap. 2). Londrina.
Kumar, S. P. J., Prasad, S. R., Banerjee, R., & Thammineni, C. (2015). Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of Botany, 116(4), 663-668. doi: 10.1093/aob/mcv098 DOI: https://doi.org/10.1093/aob/mcv098
Machado, C. G., Martins, C. C., Santana, D. G., Cruz, S. C. S., & Oliveira, S. S. C. (2011). Adequação do teste de condutividade elétrica para sementes de Pisum sativum subsp. Arvense. Ciência Rural, 41(6), 988-995. doi: 10.1590/S0103-84782011005000062 DOI: https://doi.org/10.1590/S0103-84782011005000062
Maguire, J. D. (1962). Speed of germination-and in selection and evaluation for seeding emergence and vigor. Crop Science, 2(2), 176-177. doi: 10.2135/cropsci1962.0011183X000200020033x DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Marcos, J., Fº. (2015). Fisiologia de sementes de plantas cultivadas. ABRATES.
Marcos, J., Fº. (2020). Testes de vigor: Importância e utilização. In F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, & J. Marcos Fº. (Eds.), Vigor de sementes: conceitos e testes (pp. 17-72, Cap.1). Londrina.
Marini, P., Bandeira, J. M., Borba, I. C. G., Martins, A. B. N., Moraes, D. M., Amarante, L., & Villela, F. A. (2013). Antioxidant activity of corn seeds after thermal stress. Ciência Rural, 43(6), 951-956. doi: 10.15 90/S0103-84782013005000064 DOI: https://doi.org/10.1590/S0103-84782013005000064
Merga, B., & Haji, J. (2019). Economic importance of chickpea: Production, value, and world trade. Cogent Food and Agriculture, 5(1), 1-12. doi: 10.1080/23311932.2019.1615718 DOI: https://doi.org/10.1080/23311932.2019.1615718
Ministério da Agricultura, Pecuária e Abastecimento (2009). Regras para análise de sementes. Secretaria de Defesa Agropecuária - MAPA/ACS. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/ arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf
Morais, T. C., Dias, D. C. F. S., Pinheiro, D. T., Gama, G. F. V., & Silva, L. J. (2021). Physiological quality and antioxidant enzymatic action in sunflower seeds exposed to deterioration. Revista Caatinga, 34(3), 570-579. doi: 10.1590/1983-21252021v34n308rc DOI: https://doi.org/10.1590/1983-21252021v34n308rc
Moura, M. C. F., Lima, L. K. S., Santos, C. C., & Dutra, A. S. (2017). Teste da condutividade elétrica na avaliação fisiológica em sementes de Vigna unguiculata. Revista de Ciências Agrárias, 40(4), 714-721. doi: 10.19084/RCA17034 DOI: https://doi.org/10.19084/RCA17034
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22(5), 867-880. doi: 10.1093/oxfordjournals.pcp.a076232 DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
Nascimento, W. M., & Silva, P. P. (2019). Grão-de-bico: nova aposta do agronegócio brasileiro. Seed News. https://seednews.com.br/artigos/2969-grao-de-bico-nova-aposta-do-agronegocio-brasileiro-edicao-maio-2019
Powell, A. A. (1986). Cell membranes and seed leachate conductivity in relation to the quality of seed for sowing. Journal of Seed Technology, 10(2), 81-100. doi: jstor.org/stable/23432796
Prado, J. P., Krzyzanowski, F. C., Martins, C. C., & Vieira, R. D. (2019). Physiological potential of soybean seeds and its relationship to electrical conductivity. Journal of Seed Science, 41(4), 407-415. doi: 10.1590/2317-1545v41n4214988 DOI: https://doi.org/10.1590/2317-1545v41n4214988
R Core Team (2022). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org
Santos, B. G., Vale, L. S. R., Oliveira, C. G. B., Moura, M. M., Alves, S. M. A., Pereira, W. J. Fº., Marques, M. L. S., & Carvalho, R. C. M. (2022). Electrical conductivity test in evaluating the physiological potential of Cowpea Seeds. Brazilian Journal of Development, 8(2), 11220-11231. doi: 10.34117/bjdv8n2-183 DOI: https://doi.org/10.34117/bjdv8n2-183
Silva, E. C., Menechini, W., Galvão, C. S., Oliveira, L. A. B., Ferreira, N. C. F., & Silva, L. S. (2020). Adequacy of electrical conductivity test for lentil seeds. Scientia Agraria Paranaensis, 19(3), 307-311, 2020. doi: 10.18188/sap.v19i3.22566 DOI: https://doi.org/10.18188/sap.v19i3.22566
Sponchiado, J. C., Souza, C. A., & Coelho, C. M. M. (2014). Teste de condutividade elétrica para determinação do potencial fisiológico de sementes de aveia branca. Semina: Ciências Agrárias, 35(4), 2405-2414. doi: 10.5433/1679-0359.2014v35n4Suplp240 DOI: https://doi.org/10.5433/1679-0359.2014v35n4Suplp2405
Torres, S. B., Paiva, E. P., Almeida, J. P. N., Benedito, C. P., & Carvalho, S. M. C. (2015). Teste de condutividade elétrica na avaliação da qualidade fisiológica de sementes de coentro. Revista Ciência Agronômica, 46(3), 622-629. http://www.ccarevista.ufc.br/seer/index.php/ccarevista/article/view/3881
Vieira, R. D., & Marcos, J., Fº. (2020). Teste de condutividade elétrica. In F. C. Krzyzanowski, R. D. Vieira, J. B. França-Neto, & J. Marcos Fº. (Eds.),Vigor de sementes: conceitos e testes (pp. 333-375, Cap. 8). Londrina.
Worma, M., Segatto, C., Stefen, C., Buba, G. P., & Leolato, L. S. (2019). Qualidade fisiológica de sementes de milho produzidas com adubação biológica e bioestimulante em diferentes preparos de solo. Revista Engenharia na Agricultura - Reveng, 27(3), 187-194. doi: 10.13083/reveng.v27i3.893 DOI: https://doi.org/10.13083/reveng.v27i3.893
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.