Screening of plant growth-promoting bacteria isolated from sugarcane
DOI:
https://doi.org/10.5433/1679-0359.2022v43n4p1757Keywords:
Plant microbiome, Bacillus, Solubilization, Indoleacetic acid, Antagonism.Abstract
Plant growth-promoting bacteria (PGPB) are known to establish positive relationships with plants. They act in favoring plant nutrition, production of phytohormones, control of pathogens and enhancement of stress tolerance. Thus, this study aimed to isolate bacteria from soil, rhizosphere, and root endosphere from sugarcane cultivated in the Southeastern of Brazil, to prospect strains with potential for plant growth promotion. The samples were plated in Nutrient Agar medium, and the morphologically distinct colonies were isolated and analyzed about indoleacetic acid production, phosphate solubilization and the growth control of the phytopathogenic fungus Fusarium verticillioides. A total of 219 isolates were obtained, of which 86 from soil, 67 from rhizosphere and 66 from sugarcane root endosphere. The strains that presented more than one mechanism of plant growth promotion were identified by the sequencing of 16S gene. Most species belonged to the genus Bacillus, which has strains already used in various biological products for the control of diseases in agriculture. Some Bacillus species isolated in our study have never been isolated from sugarcane, and others have been studied for the first time as plant growth promoters. The isolated strains constitute an important microbial bank to be explored to compose innovative products for agriculture.Downloads
References
Angelo, J. A., Oliveira, M. D. M., & Ghobril, C. N. (2021). Balança comercial dos agronegócios paulista e brasileiro de 2020. Análises e Indicadores do Agronegócio, 16(1), 1-16. http://www.iea.sp.gov.br/ftpiea/ AIA/AIA-03-2021.pdf
Azizoglu, U. (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt. Current Microbiology, 76(1), 1379-1385. doi: 10.1007/ s00284-019-01705-9
Behbahani, B. A., Yazdi, F. T., Shahidi, F., Mortazavi, S. A., & Mohebbi, M. (2017). Principle component analysis (PCA) for investigation of relationship between population dynamics of microbial pathogenesis, chemical and sensory characteristics in beef slices containing Tarrago essential oil. Microbial Pathogenesis, 105(1), 37-50. doi: 10.1016/j.micpath.2017.02.013
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(66), 1-10. doi: 10.1186/1475-2859-13-66
Bhutani, N., Maheshwari, R., Kumar, P., & Suneja, P. (2021). Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants. Plant Gene, 28(1), 1-12. doi: 10.1016/j.plgene.2021.100326
Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of diseases. In M. Stoytcheva, Pesticides in the modern world - pesticides use and management (pp. 273-302). Ed. IntechOpen.
Chandra, A., Chandra, P., & Tripathi, P. (2021). Whole genome sequence insight of two plant growth-promoting bacteria (B. subtilis BS87 and B. megaterium BM89) isolated and characterized from sugarcane rhizosphere depicting better crop yield potentiality, Microbiological Research, 247(1), 1-11. doi: 10.10 16/j.micres.2021.126733
Clements, T., Rautenbach, M., Ndlovu, T., Khan, S., Khan, W. (2021) A metabolomics and molecular networking approach to elucidate the structures of secondary metabolites produced by Serratia marcescens strains. Frontiers in Chemistry, 9(1), 1-16. doi: 10.3389/fchem.2021.633870
Companhia Nacional de Abastecimento (2021). Acompanhamento da safra brasileira de cana-de-açúcar. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar.
De-La-Peña, C., & Loyola-Vargas, V. M. (2014). Biotic Interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiology, 166(2), 701-719. doi: 10.1104/pp.114.241810
Devi, K. A., Pandey, P., & Sharma, G. D. (2016). Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI Journal of Biosciences, 23(4), 173-180. doi: 10.4308/hjb.23.4.173
Dunlap, C. A., Kim, S. I., Kwon, S. W., & Rooney, A. (2015). Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. International Journal of Systematic and Evolutionary Microbiology, 65(7), 2104-2109. doi: 10.1099/ijs. 0.000226
Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192-195. doi: 10.1104/pp.26.1.192
Im, S. M., Yu, N. H., Joen, H. W., Kim, S. O., Park, H. W., Park, A. R., & Kim, J. C. (2020). Biological control of tomato bacterial wilt by oxydifficidin and difficifin-producing Bacillus methylotrophicus DR-08. Pesticide Biochemistry and Physiology, 163(1), 130-137. doi: 10.1016/j.pestbp.2019.11.007
Ji, Z. L., Peng, S., Zhu, W., Dong, J. P., & Zhu, F. (2020). Induced resistance in nectarine fruit by Bacillus licheniformis W10 for the control of brown rot caused by Monilinia fructicola. Food Microbiology, 92(1), 1-9. doi: 10.1016/j.fm.2020.103558
Johns, N. I., Blazejewski, T., Gomes, A. L., & Wang, H. H. (2016). Principles for designing synthetic microbial communities. Current Opinion in Microbiology, 31(1), 146-153. doi: 10.1016/j.mib.2016.03.010
Kashyap, B. K., Solanki, M. K., Pandey, A. K., Prabha, S., Kumar, P., & Kumari, B. (2019). Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In R. Ansari, I. Mahmood (Eds.), Plant health under biotic stress (pp. 219-236). Springer.
Khedher, S. B., Trabelsi, B. M., & Tounsi, S. (2020). Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control, 152(1), 1-37. doi: 10.1016/j.biocontrol.2020.104444
Li, Y., Feng, X., Wang, X., Zheng, L., & Liu, H. (2020). Inhibitory effects of Bacillus licheniformis BL06 on Phytophthora capsici in pepper by multiple modes of action. Biological Control, 144(1), 1-9. doi: 10.10 16/j.biocontrol.2020.104210
Lyngwi, N. A., Nongkhlaw, M., Kalita, D., & Joshi, S. R. (2016). Bioprospecting of plant growth promoting Bacilli and related genera prevalent in soils of pristine sacred groves: biochemical and molecular approach. PLoS ONE, 11(4), 1-13. doi: 10.1371/journal.pone.0152951
Mendes, R., Pizzirani-Kleiner, A., Araújo, W., Raaijmakers, J. M. (2007). Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Applied and Environmental Microbiology, 73(22), 7259-7267. doi: 10.1128/AEM.01222-07
Naureen, Z., Rehman, N. U., Hussain, H., Hussain, J., Gilani, S. A., Housni, S. K. A., Mabood, F., Khan, A. L., Farooq, S., Abbas, G., & Harrasi, A. A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for promotion and biocontrol activities against phytopathogenic fungi. Frontiers in Microbiology, 8(1), 1-11. doi: 10.3389/fmicb.2017.01477
Orozco-Mosqueda, M. C., Rocha-Granados, M. C., Glick, B. R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth- promoting mechanisms. Microbiological Research, 208(1), 25-31. doi: 10.1016/j.micres.2018.01.005
Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménzez-Gerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological Research, 169(5), 325-336. doi: 10.1016/j.micres.2013.09.011
Prashanth, S., & Mathivanan, N. (2010). Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Archives of Phytopathology and Plant Protection, 43(2), 191-208. doi: 10.1080/03235400802404734
Purkayastha, G. D., Mangar, P., Saha, A., & Saha, D. (2018). Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE, 13(2), 1-27. doi: 10.1371/journal.pone.0191761
Raddadi, N., Cherif, A., Boudabous, A., & Daffonchio, D. (2008). Screening of plant growth promoting traits of Bacillus thuringiensis. Annals of Microbiology, 58(1), 47-52. doi: 10.1007/BF03179444
Rodrigues, A. A., Forzani, M. V., Soares, R. S., Sibov, S. T., & Vieira, J. D. G. (2016). Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical, 46(2), 149-158. doi: 10.1590/1983-40632016v4639526
Santos, S. G., Chaves, V. A., Ribeiro, F. S., Alves, G. C., & Reis, V. M. (2019). Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria. Applied Soil Ecology, 133(1), 12-23. doi: 10.1016/j.apsoil.2018.08.015
Schlaeppi, K., & Bulgarelli, D. (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions, 28(3), 212-217. doi: 10.1094/mpmi-10-14-0334-fi
Shabanamol, S., Divya, K., George, T. K., Rishad, K. S., Sreekumar, T. S., & Jisha, M. S. (2018). Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated fom rice (Oryza sativa). Physiological and Molecular Plant Pathology, 102(1), 46-54. doi: 10.1016/j.pmpp.2017.11.003
Shabanamol, S., Sreekumar, J., & Jisha, M. S. (2017). Bioprospecting endophytic diazotrophic Lyinibacillus sphaericus as biocontrol agents of rice sheath blight disease. 3 Biotech, 7(5), 1-11. doi: 10.1007/s13205-017-0956-6
Silva, M. L. R. B., Figueroa, C. S., Mergulhão, A. C. E. S., & Lyra, M. C. P. (2014). Diversidade e potencial de solubilização de fosfato in vitro por bactérias endofíticas associadas à cultura da palma forrageira (Opuntia e Nopalea) em Pernambuco. Pesquisa Agropecuária Pernambucana, 19(2), 85-88. doi: 10.12 661/pap.2014.013
Singh, R. K., Singh, P., Li, H., Song, Q., Guo, D., Solanki, M. K., Verma, K. K., Malviya, M. K., Song, X. P., Lakshmanan, P., Yang, L. T., & Li, Y. (2020). Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology, 20(220), 1-21. doi: 10.1186/s12870-020-02400-9
Souza, R. S. C., Okura, V. K., Armanhi, J. S. L., Jorrín, B., Lozano, N., Silva, M. J., González-Guerrero, M., Araújo, L. M., Verza, N. C., Bagheri, H. C., Imperial, J., & Arruda, P. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, 6(1), 1-15. doi: 10.10 38/srep28774
Sukkasem, P., Kurniawan, A., Kao, T. C., & Chuang, H. W. (2018). A multifaceted rhizobacterium Bacillus licheniformis functions as a fungal antagonist and a promoter of plant growth and abiotic stress tolerance. Environmental and Experimental Botany, 155(1), 541-551. doi: 10.1016/j.envexpbot.2018.08.005
Teheran-Sierra, L. G., Funnicelli, M. I. G., Carvalho, L. A. L., Ferro, M. I. T., Soares, M. A., & Pinheiro, D. G. (2021). Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiological Research, 247(1), 1-14. doi: 10.1016/j.micres.2021.126729
Wu, J. J., Chou, H. P., Huang, J. W., & Deng, W. L. (2021). Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola. Microbiological Research, 251(1), 1-11. doi: 10.1016/j.micres.2021.1268
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.