Does elevated CO2 affect the biological aspects of Liriomyza sativae in melon plants?

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n4p2151

Keywords:

Agromyzidae, Carbon dioxide, Climate change, Cucumis melo, Leafminer.

Abstract

An increase in the carbon dioxide concentration (CO2) in the atmosphere has occurred in recent years, influencing the different biological aspects of herbivorous insects. The present study aimed to evaluate the effect of CO2 increase on the biological aspects of Liriomyza sativae Blanchard leafminer in melon plants. For this, two experiments were carried out: (i) to evaluate the effect of melon plants grown in CO2-enriched environments on the immature developmental stages of L. sativae and L. sativae adult longevity, and (ii) to verify the impact of increased CO2 concentration on L. sativae adult survival, feeding punctures, and oviposition. The experiments were carried out in growth chambers maintained in the temperature regime of 20-26-33 °C (simulating the minimum, average, and maximum daily temperature) and under two CO2 concentrations (400 ppm and 770 ppm).The immature stages and the egg-adult period of L. sativae were longer when they were grown on plants grown in high CO2 levels (770 ppm), but no difference in adult longevity was observed. The viability of the immature phases was not different between the two CO2 concentrations. Furthermore, there was no difference in the number of eggs and feeding punctures between treatments. Thus, the increase in CO2 concentration prolongs the duration of the immature stages of L. sativae; however, it does not affect their viability. Adult survival, fertility, and feeding punctures were also unmodified by the environment enriched with CO2.

Author Biographies

Jéssica de Oliveira Santos, Universidade de Pernambuco

Master’s Course of the Graduate Program in Graduate Program in Environmental Science and Technology, Universidade de Pernambuco, UPE, Petrolina, PE, Brazil.

Francislene Angelotti, Empresa Brasileira de Pesquisa Agropecuária

DSc in Agronomy, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Semi-arid, Petrolina, PE, Brazil.

Tiago Cardoso da Costa-Lima, Empresa Brasileira de Pesquisa Agropecuária

DSc in Entomology, EMBRAPA Semi-arid, Petrolina, PE, Brazil.

References

Akbar, S., Pavani, T., Nagaraja, T., & Sharma, H. C. (2015). Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Nocutuidae: Lepidoptera). Environmental Entomology, 45(1), 229-236. doi: 1093/ee/nvv144

Araujo, W. S., Vieira, M. C., Lewinsohn, T. M., & Almeida, M., Neto. (2015). Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks. PLoS One, 10(1), e0115606. doi: 10.1371/journal.pone.0115606

Auad, A. M., & Fonseca, M. G. das. (2017). A Entomologia nos cenários das mudanças climáticas. In W. Bettiol, E., Hamada, F., A, A. M. Auad,, & R. Ghini (Eds.), Aquecimento global e problema fitossanitários (pp. 93-115). Brasília: EMBRAPA Meio Ambiente.

Auad, A. M., Fonseca, M. G., Resende, T. T., & Maddalena, I. S. C. P. (2012). Effect of climate change on longevity and reproduction of Sipha flava (Hemiptera: Aphididae). Florida Entomologist, 95(2), 433-444. doi: 10.1653/024.095.0227

Boullis, A., Francis, F., & Verheggen, F. (2018). Aphid- hoverfly interactions under elevated CO2 concentrations: oviposition and larval development. Physiological Entomology, 43(3), 245-250. doi: 10. 1111/phen.12253

Chown, S. L., & Nicolson, S. W. (2004). Insect physiological ecology: mechanisms and patterns. Oxford: Oxford University Press.

Costa-Lima, T. C., Geremias, L. D., Begiato, A. M., Chagas, M. C. M. das, & Parra, J. R. P. (2017). Sistema de criação de parasitoide de mosca-minadora. Petrolina: EMBRAPA Semiárido-Circular Técnica (INFOTECA-E).

Costa-Lima, T. C., Geremias, L. D., & Parra, J. R. (2009). Effect of temperature and relative-humidity on the development of Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Vigna unguiculata. Neotropical Entomology, 38(6), 727-733. doi: 10.1590/S1519-566X2009000600004

Costa-Lima, T. C., Geremias, L. D., & Parra, J. R. P. (2010). Reproductive activity and survivorship of Liriomyza sativae (Diptera: Agromyzidae) at different temperatures and relative humidity levels. Environmental Entomology, 39(1), 195-201. doi: 10.1603/EN09209

Costa-Lima, T. C., Silva, A. D. C., & Parra, J. R. P. (2015). Moscas-minadoras do gênero Liriomyza (Diptera: Agromyzidae): aspectos taxonômicos e biologia. Petrolina: EMBRAPA Semiárido-Documentos (INFOTECA-E).

DeLucia, E. H., Nabity, P. D., Zavala, J. A., & Berenbaum, M. R. (2012). Climate change: resetting plant-insect interactions. Plant Physiology, 160(4), 1677-1685. doi: 10.1104/pp.112.204750

Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919. doi: 10.1126/science.aat3466

Fonseca, M. G., Santos, D. R., & Auad, A. M. (2014). Impact of different carbon dioxide concentrations in the olfactory response of Sipha flava (Hemiptera: Aphididae) and its predators. Journal of Insect Behavior, 27(6), 722-728. doi: 10.1007/s10905-014-9463-3

Gifford, R. M., Barrett, D., Lutze, J. L., & Samarakoon, A. B. (1996). Agriculture and global change: scaling direct carbon dioxide impacts and feedbacks through time. In B. Walker, & W. Steffen (Eds.,) Global change and terrestrial ecosystems (pp. 229-259). Cambridge: Cambridge University Press.

Goldin, A. (1987). Reassessing the use of loss-on-ignition for estimating organic matter content in noncalcareous soils. Communications in Soil Science and Plant Analysis, 18(10), 1111-1116. doi: 10.10 80/00103628709367886

Hetz, S. K., & Bradley, T. J. (2005). Insects breathe discontinuously to avoid oxygen toxicity. Nature, 433(7025), 516-519. doi: 10.1038/nature03106

Intergovernmental Panel on Climate Change (2013). Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

Johns, C. V., & Hughes, L. (2002). Interactive effects of elevated CO2 and temperature on the leaf‐miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Global Change Biology, 8(2), 142-152. doi: 10.1046/j.1365-2486.2002.00462.x

Kagata, H., & Ohgushi, T. (2012). Carbon to nitrogen excretion ratio in lepidopteran larvae: relative importance of ecological stoichiometry and metabolic scaling. Oikos, 121(11), 1869-1877. doi: 10.111 1/j.1600-0706.2012.20274.x

Kjeldahl, J. (1883). A new method for the determination of nitrogen in organic matter. Analytical Chermistry, 22(1), 366-382. doi: 10003538053

Kopper, B. J., & Lindroth, R. L. (2003). Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated levels of atmospheric CO2 and O3. Agricultural and Forest Entomology, 5(1), 17-26. doi: 10.1046/j.146 1-9563.2003.00158.x

Lake, J. A., & Wade, R. N. (2009). Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. Journal of Experimental Botany, 60(11), 3123-3131. doi: 10.1093/jxb/erp147

Lemos, L. J. U., Costa-Lima, T. C. da, Godoy, W. A. C., Barros, R. V., & Barros, R. (2021). Evidence for coabundance of leafminer flies and whiteflies in melon crops. Bragantia, 80(e0421), 1-9. doi: 10.1590/ 1678-4499.20190459

Marchioro, C. A., Krechemer, F. S., & Foerster, L. A. (2017). Estimating the development rate of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), using linear and nonlinear models. Pest Management Science, 73(7), 1486-1493. doi: 10.1002/ps.4484

Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11(1), 119-161. doi: 10.1146/annurev.es.11.110180.001003

Mitcham, E., Martin, T., & Zhou, S. (2006). The mode of action of insecticidal controlled atmospheres. Bulletin of Entomological Research, 96(3), 213-222. doi: 10.1079/BER2006424

Morrison, J. I. L., & Morecroft, M. D. (2008). Plant growth and climate change. New York: Wiley-Blackwell.

National Oceanic and Atmospheric Administration (2019). Trends in atmospheric carbon dioxide. Retrieved from https://www.esrl.noaa.gov/gmd/ccgg/trends/

Olivier, J. G., Schure, K. M., & Peters, J. A. H. W. (2017). Trends in global CO2 and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency, The Hague.

Parrella, M. P. (1987). Biology of Liriomyza. Annual Review of Entomology, 32(1), 201-224. doi: 10.1146/ annrev.en.32.010187.001221

Paudel, K. P., & Hatch, L. U. (2012). Global warming, impact on agriculture and adaptation strategy. Natural Resource Modeling, 25(3), 56-481. doi: 10.1111/j.1939-7445.2012.00127.x

Pincebourde, S., & Casas, J. (2006). Leaf miner-induced changes in leaf transmittance cause variations in insect respiration rates. Journal of Insects Physiology, 52(2), 194-201. doi: 10.1016/j.jinsphys.2005.10. 004

Pincebourde, S., & Casas, J. (2016). Hypoxia and hypercarbia in endophagous insects: larval position in the plant gas exchange network is key. Journal of Insect Physiology, 84(1), 137-153. doi: 10.1016/j. jinsphys.2015.07.006

R Development Core Team (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Salt, D. T., Brooks, G. L., & Whittaker, J. B. (1995). Elevated carborn dioxide affects leaf-miner performance and plant growth in docks (Rumex spp.). Global Change Biology, 1(2), 153-156. doi: 10.1 111/j.1365-2486.1995.tb00015.x

Satishchandra, K. N., Vaddi, S., Naik, S. O., Chakravarthy, A. K., & Atlihan, R. (2018). Effect of temperature and CO2 on population growth of South American Tomato Moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on tomato. Journal of Economic Entomology, 111(4), 1614-1624. doi: 10. 1093/jee/toy143

Sinclair, R. J., & Hughes, L. (2010). Leaf miners: the hidden herbivores. Austral Ecology, 35(3), 300-313. doi: 10.11111/1442-9993.2009.02039.x

Smith, P. H. D., & Johnes, T. H. (1998). Effects of elevated CO2 on the chrysanthemum leaf-miner, Chromatomyia syngenesiae: a greenhouse study. Global Change Biology, 4(3), 287-291. doi: 10.1046/j 1365-24861998.00149.x

Srinivasa Rao, M., Manimanjari, D., Vanaja, M., Rama Rao, C. A., Srinivas, K., Rao, V. U. M., & Jay, R. (2012). Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science, 12(1), 1-9. doi: 10.1673/031.012.10301

Watt, A. D., Whittaker, J. B., Docherty, M., Brooks, G., Lindsay, E., & Salt, D. T. (1995). The impact of elevated atmospheric CO2 on insect herbivores. In Harrington, R & Stork, N. E, Insects in a changing environment (pp. 197-217). London: Academic Press.

Yadugiri, V. T. (2010). Climate change: the role of plant physiology. Current Science, 99(4), 423-425. doi: jstor.org/stable/24109559

Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F., & Stewart, C. N., Jr. (2009). Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends in Ecology e Evolution, 24(63), 323-331. doi: 10.1016/j.tree.2009.01.012

Zhou, S., Criddle, R. S., & Mitcham, E. J. (2000). Metabolic response of Platynota stultana pupae to controlled atmospheres and its relation to insect mortality response. Journal of Insect Physiology, 46(10), 1375-1385. doi: 10.1016/S0022-1910(00)00060-3

Downloads

Published

2021-05-20

How to Cite

Santos, J. de O., Angelotti, F., & Costa-Lima, T. C. da. (2021). Does elevated CO2 affect the biological aspects of Liriomyza sativae in melon plants?. Semina: Ciências Agrárias, 42(4), 2151–2162. https://doi.org/10.5433/1679-0359.2021v42n4p2151

Issue

Section

Articles

Most read articles by the same author(s)