Enzymatic activity in azuki bean seedlings subjected to salinity and water deficiency
DOI:
https://doi.org/10.5433/1679-0359.2021v42n1p419Keywords:
Antioxidant enzymes, Vigna angularis L., Water stress, Salinity stress.Abstract
Salinity and water deficiency are factors that limit the initial development of crops, directly interfering with the efficiency of food production. Studies on the behavior of cultivable species under stress are important to determine management actions; therefore, the mechanisms involved in post-stress recovery should be investigated. The objective of this study was to evaluate the effect of water and salt stress on enzymatic activity in azuki bean seedlings. The experimental design was a completely randomized, 4 × 6 factorial arrangement (four reagents: CaCl2, KCl, NaCl, and polyethylene glycol 6000 (PEG 6000) × six osmotic potentials: 0.0, -0.2, -0.4, -0.8, -1.2, and -1.6 MPa). The quantification of protein content and analysis of enzyme (catalase, peroxidase, and phenylalanine ammonia-lyase) activity in seedlings were performed on the 10th day after sowing. NaCl is toxic and recovery of azuki bean seedlings was less likely under salt stress owing to reduced enzymatic activity. In contrast, seedlings subjected to KCl treatment showed increased production of antioxidant enzymes.Downloads
References
Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R. Malik, Z., & Parveen. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture, 103(2), 229-238. doi: 10.13080/z-a.2016.103.030
Ahmed, I. M., Nadira, U. A., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2014). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111(1), 1-12. doi: 10.1016/j.envexpbot.2014.10. 003
Akham, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Iqbal, J., & Mohsan, M. (2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany, 42(1), 141-154.
Anderson, D., Prasad, K., & Stewart, R. (1995). Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109(4), 1247-1257. doi: 10.1104/pp.109.4.1247
Bertoncelli, D. J., Alamino, D. A., Oliveira, M. de C., Marchesan, E. D., & Loss, E. M. S. (2015). Aspectos bioquímicos do desenvolvimento inicial de plantas de fisális sob diferentes condições luminosas. Brazilian Journal of Applied Technology for Agricultural Science, 8(1), 37-46. doi: 10.5935/PAeT.V8. N1.04
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 7(72), 248-254. doi: 10.1006/abio.1976. 9999
Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461-481. doi: 10.1007/s13593-015-0287-0
Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi: 10.1093/jxb/err460
Liu, C., Fan, B., Cao, Z., Su, Q., Wang, Y., Zhang, Z., & Tian, J. (2016). Development of a high-density genetic linkage map and identification of flowering time QTLs in adzuki bean (Vigna angularis). Scientific Reports, 6(39523), 1-10. doi: 10.1038/srep39523
Lusso, M. F. G., & Pascholati, S. F. (1999). Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica, 25(3), 244-249.
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi: 10.1016/j.abb.2005.10.018
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
Santos, P. R., Ruiz, H. A., Neves, J. C. L., Freire, M. B. G. S., & Freire, F. J. (2009). Acúmulo de cátions em dois cultivares de feijoeiro crescidos em soluções salinas. Revista Ceres, 56(5), 666-678.
Soares, A. M. S., & Machado, O. L. T. (2007). Defesa de plantas: sinalização química e espécies reativas de oxigênio. Revista Trópica: Ciências Agrárias e Biológicas, 1(1), 9-19.
Su, D., Chen, N., Gao, T., Wang, C., Sheng, M., & Yang, C. (2012). Effects of Si+, K+, and Ca2+ on antioxidant enzyme activities and osmolytes in halocnemum strobilaceum under salt stress. Advanced Materials Research, 356-360(1), 2542-2550. doi: 10.4028/www.scientific.net/AMR.356-360.2542
Umesha, S. (2006). Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica, 34(1), 68-71.
Villela, F. A., Doni, L., Fº., & Sequeira, E. L. (1991). Tabela de potencial osmótico em função da concentração de polietileno glicol 6000 e da temperatura. Pesquisa Agropecuária Brasileira, 26(11/12), 1957-1968.
Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., & Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165(14), 55-1465. doi: 10.1016/j.jplph.2008.01.001
Zlatev, Z., & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24(1), 57-72. doi: 10.9755/ejfa.v24i1.105 99
Złotek, U., Szymanowska, U., Baraniak, B., & Karaś, M. (2015). Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Acta Scientiarum Polonorum Technologia Alimentaria, 14(1), 55-62. doi: 10.17306/J.AFS.2015.1.6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.