Enzymatic activity in azuki bean seedlings subjected to salinity and water deficiency

Authors

DOI:

https://doi.org/10.5433/1679-0359.2021v42n1p419

Keywords:

Antioxidant enzymes, Vigna angularis L., Water stress, Salinity stress.

Abstract

Salinity and water deficiency are factors that limit the initial development of crops, directly interfering with the efficiency of food production. Studies on the behavior of cultivable species under stress are important to determine management actions; therefore, the mechanisms involved in post-stress recovery should be investigated. The objective of this study was to evaluate the effect of water and salt stress on enzymatic activity in azuki bean seedlings. The experimental design was a completely randomized, 4 × 6 factorial arrangement (four reagents: CaCl2, KCl, NaCl, and polyethylene glycol 6000 (PEG 6000) × six osmotic potentials: 0.0, -0.2, -0.4, -0.8, -1.2, and -1.6 MPa). The quantification of protein content and analysis of enzyme (catalase, peroxidase, and phenylalanine ammonia-lyase) activity in seedlings were performed on the 10th day after sowing. NaCl is toxic and recovery of azuki bean seedlings was less likely under salt stress owing to reduced enzymatic activity. In contrast, seedlings subjected to KCl treatment showed increased production of antioxidant enzymes.

Metrics

Metrics Loading ...

Author Biographies

Mônica Satie Omura, Universidade Estadual de Londrina

Enga Agra, Dra em Agronomia, Universidade Estadual de Londrina, UEL, Departamento de Agronomia, Londrina, PR, Brasil.

Gustavo Henrique Freiria, Universidade do Estado de Minas Gerais

Prof. Dr., Universidade do Estado de Minas Gerais, UEMG, Unidade Ituiutaba, MG, Brasil

Verônica Pellizzaro, Universidade Estadual de Londrina

Discente do Curso de Doutorado do Programa de Pós-Graduação Agronomia, UEL, Departamento de Agronomia, Londrina, PR, Brasil

Douglas Junior Bertoncelli, Universidade Estadual de Londrina

Engo Agro, Dr. em Agronomia, Universidade Estadual de Londrina, UEL, Departamento de Agronomia, Londrina, PR, Brasil.

Felipe Favoretto Furlan, Instituto de Desenvolvimento Rural do Paraná

Engº Agrº, Dr., Instituto de Desenvolvimento Rural do Paraná, IAPAR, EMATER, Pitangueiras, PR, Brasil.

Eli Carlos de Oliveira, Omnia Brasil

Pesquisador Dr., Omnia Brasil, Leme, SP, Brasil.

Lúcia Sadayo Assari Takahashi, Universidade Estadual de Londrina

Profa Dra Sênior, Departamento de Agronomia, Programa de Pós-Graduação em Agronomia, UEL, Londrina, PR, Brasil, Bolsista Produtividade da Fundação Araucária.

References

Abbasi, G. H., Akhatar, J., Anwar-Ul-Haq, M., Ali, S., Cheng, Z. H., & Malik, W. (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pakistan Journal of Botany, 46(1), 135-146.

Abbasi, H., Jamil, M., Haq, A., Ali, S., Ahmad, R. Malik, Z., & Parveen. (2016). Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture, 103(2), 229-238. doi: 10.13080/z-a.2016.103.030

Ahmed, I. M., Nadira, U. A., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2014). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111(1), 1-12. doi: 10.1016/j.envexpbot.2014.10. 003

Akham, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Iqbal, J., & Mohsan, M. (2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany, 42(1), 141-154.

Anderson, D., Prasad, K., & Stewart, R. (1995). Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109(4), 1247-1257. doi: 10.1104/pp.109.4.1247

Bertoncelli, D. J., Alamino, D. A., Oliveira, M. de C., Marchesan, E. D., & Loss, E. M. S. (2015). Aspectos bioquímicos do desenvolvimento inicial de plantas de fisális sob diferentes condições luminosas. Brazilian Journal of Applied Technology for Agricultural Science, 8(1), 37-46. doi: 10.5935/PAeT.V8. N1.04

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 7(72), 248-254. doi: 10.1006/abio.1976. 9999

Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461-481. doi: 10.1007/s13593-015-0287-0

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi: 10.1093/jxb/err460

Liu, C., Fan, B., Cao, Z., Su, Q., Wang, Y., Zhang, Z., & Tian, J. (2016). Development of a high-density genetic linkage map and identification of flowering time QTLs in adzuki bean (Vigna angularis). Scientific Reports, 6(39523), 1-10. doi: 10.1038/srep39523

Lusso, M. F. G., & Pascholati, S. F. (1999). Activity and isoenzymatic pattern of soluble peroxidases in maize tissues after mechanical injury or fungal inoculation. Summa Phytopathologica, 25(3), 244-249.

Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi: 10.1016/j.abb.2005.10.018

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi: 10.1146/annurev.arplant.59.032607.092911

Santos, P. R., Ruiz, H. A., Neves, J. C. L., Freire, M. B. G. S., & Freire, F. J. (2009). Acúmulo de cátions em dois cultivares de feijoeiro crescidos em soluções salinas. Revista Ceres, 56(5), 666-678.

Soares, A. M. S., & Machado, O. L. T. (2007). Defesa de plantas: sinalização química e espécies reativas de oxigênio. Revista Trópica: Ciências Agrárias e Biológicas, 1(1), 9-19.

Su, D., Chen, N., Gao, T., Wang, C., Sheng, M., & Yang, C. (2012). Effects of Si+, K+, and Ca2+ on antioxidant enzyme activities and osmolytes in halocnemum strobilaceum under salt stress. Advanced Materials Research, 356-360(1), 2542-2550. doi: 10.4028/www.scientific.net/AMR.356-360.2542

Umesha, S. (2006). Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica, 34(1), 68-71.

Villela, F. A., Doni, L., Fº., & Sequeira, E. L. (1991). Tabela de potencial osmótico em função da concentração de polietileno glicol 6000 e da temperatura. Pesquisa Agropecuária Brasileira, 26(11/12), 1957-1968.

Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., & Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165(14), 55-1465. doi: 10.1016/j.jplph.2008.01.001

Zlatev, Z., & Lidon, F. C. (2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24(1), 57-72. doi: 10.9755/ejfa.v24i1.105 99

Złotek, U., Szymanowska, U., Baraniak, B., & Karaś, M. (2015). Antioxidant activity of polyphenols of adzuki bean (Vigna angularis) germinated in abiotic stress conditions. Acta Scientiarum Polonorum Technologia Alimentaria, 14(1), 55-62. doi: 10.17306/J.AFS.2015.1.6

Downloads

Published

2021-01-19

How to Cite

Omura, M. S., Freiria, G. H., Pellizzaro, V., Bertoncelli, D. J., Furlan, F. F., Oliveira, E. C. de, & Takahashi, L. S. A. (2021). Enzymatic activity in azuki bean seedlings subjected to salinity and water deficiency. Semina: Ciências Agrárias, 42(1), 419–428. https://doi.org/10.5433/1679-0359.2021v42n1p419

Issue

Section

Communication

Most read articles by the same author(s)

<< < 1 2 3 > >>