Alternative low-cost precipitation kit for assessing irrigation systems

Authors

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5p1783

Keywords:

Irrigation efficiency, GESAI kit, Rain gauge, Distribution uniformity.

Abstract

Irrigation systems must be assessed periodically to verify equipment quality and the need for adjustments. For this, precipitation test kits are necessary. However, commercially available kits have as their main disadvantage the high cost. Therefore, this study aimed to develop an alternative low-cost precipitation kit and verify its efficiency compared to an available commercial brand. The validation test was carried out at the Laboratory of Hydraulics of the Federal University of Viçosa (UFV) using a conventional sprinkler system organized in a quadrangular arrangement. Water collections were carried out within two hours using a grid of plastic collectors spaced at 3 × 3 m and installed at 0.7 m above the ground. The coefficient of determination (R2), uniformity coefficients, application efficiency, and thematic maps of the spatial variability of the applied irrigation depth were compared between kits and used for the validation of measurements. The results showed a high agreement between the developed (GESAI) and a commercial kit (Trademark) (R2 = 0.9849), and a high spatial agreement between the collected water depths. Therefore, the GESAI kit is a low-cost alternative for the assessment of irrigation systems.

Downloads

Download data is not yet available.

Author Biographies

Roberto Filgueiras, Universidade Federal de Viçosa

Dr., Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

Fernando França da Cunha, Universidade Federal de Viçosa

Prof., Dr., Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

Luan Peroni Venancio, Universidade Federal de Viçosa

Dr., Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

Daniel Althoff, Universidade Federal de Viçosa

Discente de Doutorado, Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

Robson Argolo do Santos, Universidade Federal de Viçosa

Discente de Doutorado, Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

Jannaylton Éverton Oliveira Santos, Universidade Federal de Viçosa

Dr., Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

Carlos Augusto Brasileiro de Alencar, Universidade Federal de Viçosa

Prof., Dr., Departamento de Engenharia Agrícola, DEA/UFV, Viçosa, MG, Brasil.

References

Agência Nacional das Águas. (2019). Manual de usos consutivos da água no Brasil. Recuperado de http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/central-de-publicacoes/ana_manual_de_ usos_consuntivos_da_agua_no_brasil.pdf/view

American Society of Agricultural Engineers. (2001). Test procedure for determining the uniformity of water distribution of center pivot and lateral move irrigation machines equipped with spray or sprinkler nozzles. Recuperado de https://www.canr.msu.edu/uploads/235/67987/ASAE_S436.1.pdf

Ascough, G. W., & Kiker, G. A. (2002). The effect of irrigation uniformity on irrigation water requirements. Water SA, 28(2), 235-242. doi: 10.4314/wsa.v28i2.4890

Associação Brasileira de Normas Técnicas. (1998). NBR 14244: Equipamentos de irrigação mecanizada -Pivô central e lateral móvel providos de emissores fixos ou rotativos - Determinação da uniformidade de distribuição de água. Rio de Janeiro, 1-11.

Barkunan, S. R., Bhanumathi, V., & Sethuram, J. (2019). Smart sensor for automatic drip irrigation system for paddy cultivation. Computers & Electrical Engineering, 73, 180-193. doi: 10.1016/j.compeleceng.2018.11.013

Baum, M. C., Dukes, M. D., & Miller, G. L. (2005). Analysis of residential irrigation distribution uniformity. Journal of irrigation and drainage engineering, 131(4), 336-341. doi: 10.1061/(ASCE)0733-9437(2005)131:4(336)

Beskow, S., Colombo, A., Ribeiro, M. S., Ferreira, L. S., & Rossi, R. (2008). Simulação das perdas de água por evaporação e arraste, no aspersor NY-7 (4,6 mm x 4,0 mm), em sistemas de aspersão convencional. Engenharia Agrícola, 28(3), 427-437. doi: 10.1590/S0100-69162008000300004

Christiansen, J. E. (1942). Irrigation by sprinkling. (Bulletin, 670). Berkeley: University of California Agricultural Experiment Station.

Clemmens, A. J. (1991). Irrigation uniformity relationships for irrigation system management. Journal of Irrigation and Drainage Engineering, 117(5), 682-699. doi: 10.1061/(ASCE)0733-9437(1991)117:5(682)

Criddle, W. D. (1956). Method for evaluating irrigation systems. Agriculture Handbook, 82, 2-11.

Deveci, O., Onkol, M., Unver, H. O., & Ozturk, Z. (2015). Design and development of a low-cost solar powered drip irrigation system using Systems Modeling Language. Journal of Cleaner Production, 102, 529-544. doi: 10.1016/j.jclepro.2015.04.124

Dukes, M. D. (2006). Effect of wind speed and pressure on linear move irrigation system uniformity. Applied Engineering in Agriculture, 22(4), 541-548. doi: 10.13031/2013.21222

Faria, L. C., Beskow, S., Colombo, A., Nörenberg, B. G., Rettore, O., Neto, & Simões, M. C. (2016). Influence of the wind on water application uniformity of a mechanical lateral move irrigation equipment using rotating plate sprinklers. Ciência Rural, 46(1), 83-88. doi: 10.1590/0103-8478cr20141558

Food and Agriculture Organization, & Word Water Council. (2015). Towards a water and food secure future. Critical perspectives for policy-makers. Roma.

Gomes, F. H. F., Cunha, F. N., Lopes-Filho, L. C., F., Vidal, V. M., Soares, F. A. L., & Teixeira, M. B. (2017). Calibração de um sensor de umidade do solo de baixo custo. Revista Brasileira de Agricultura Irrigada, 11(4), 1509-1516. doi: 10.7127/rbai.v11n400605

Hart, W. E. (1961). Overhead irrigation pattern parameters. Agricultural Engineering, 42(7), 354-355.

Hoffmann, M., Schwartengräber, R., Wessolek, G., & Peters, A. (2016). Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research, 174, 12-123. doi: 10.1016/j.atmosres.2016.01.016

Keller, J., & Bliesner, R. D. (1990). Sprinkle and trickle irrigation. New York, NY: Van Nostrand Reinhold.

López-Mata, E., Tarjuelo, J. M., Juan, J. A. de, Ballesteros, R., & Domínguez, A. (2010). Effect of irrigation uniformity on the profitability of crops. Agricultural Water Management, 98(1), 19-198. doi: 10.1016/j.agwat.2010.08.006

Mantovani, E. C. (2001). AVALIA: Programa de Avaliação da Irrigação por Aspersão e Localizada. Viçosa, MG: UFV.

Mantovani, E. C., Bernardo, S., & Palaretti, L. F. (2009). Irrigação princípios e métodos.Viçosa: UFV.

Maroufpoor, S., Shiri, J., & Maroufpoor, E. (2019). Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables. Agricultural Water Management, 215, 63-73. doi: 10.1016/j.agwat.2019.01.008

Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. doi: 10.1126/sciadv.1500323

Merriam, J. L., & Keller, J. (1978). Farm irrigation system evaluation: a guide for management. Logan, Utah: Utah State University.

Mohamed, A. Z., Peters, R. T., Zhu, X., & Sarwar, A. (2019). Adjusting irrigation uniformity coefficients for unimportant variability on a small scale. Agricultural Water Management, 213, 1078-1083. doi: 10.1016/j.agwat.2018.07.017

Mota, W. N., Alves, J., Jr., Evangelista, A. W. P., & Casaroli, D. (2018). SMUT-Sistema de baixo custo para aquisição de temperatura e umidade relativa do ar para manejo de irrigação. Revista Engenharia na Agricultura, 26(1), 89-99. doi: 10.13083/reveng.v26i1.897

Queiroz, T. M. de, Lima, S. C. R. V., Botrel, T. A., & Frizzone, J. A. (2008). Coletor automático para ensaio de aspersores em laboratório (1) - desenvolvimento do modelo. Revista Brasileira de Agricultura Irrigada, 2(1), 24-28. doi: 10.7127/rbai.v2n100200

Ramadan, K. M., Oates, M. J., Molina-Martinez, J. M., & Ruiz-Canales, A. (2018). Design and implementation of a low cost photovoltaic soil moisture monitoring station for irrigation scheduling with different frequency domain analysis probe structures. Computers and Electronics in Agriculture, 148, 148-159. doi: 10.1016/j.compag.2017.12.038

Smajstrla, A. G., & Zazueta, F. S. (1994). Evaporation loss during sprinkler irrigation. Gainesville: University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS.

Surendran, U., Jayakumar, M., & Marimuthu, S. (2016). Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Science of The Total Environment, 573, 1430-1440. doi: 10.1016/j.scitotenv.2016.07.144

Tarjuelo, J. M., Ortega, J. F., Montero, J., & De Juan, J. A. (2000). Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions. Agricultural Water Management, 43(3), 263-84. doi: 10.1016/S0378-3774(99)00066-9

Wilcox, J. C., & Swailes, G. E. (1947). Uniformity of water distribution by some undertree orchard sprinklers. Scientific Agriculture, 27(11), 565-583. DOI: 10.4141/sa-1947-0067

Wu, D., Cui, Y., & Luo, Y. (2019). Irrigation efficiency and water-saving potential considering reuse of return flow. Agricultural Water Management, 221, 519-527. doi: 10.1016/j.agwat.2019.05.021

Downloads

Published

2020-06-17

How to Cite

Filgueiras, R., Cunha, F. F. da, Venancio, L. P., Althoff, D., Santos, R. A. do, Santos, J. Éverton O., & Alencar, C. A. B. de. (2020). Alternative low-cost precipitation kit for assessing irrigation systems. Semina: Ciências Agrárias, 41(5), 1783–1798. https://doi.org/10.5433/1679-0359.2020v41n5p1783

Issue

Section

Communication

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.