Soybean hulls as feed substitute of ground corn can increase the fiber digestibility and bacterial fibrolytic profile of grazing Nellore steers during the rainy season

Authors

DOI:

https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3577

Keywords:

Digestibility, Protozoa, Rumen bacteria, Tropical pasture, Whole soybean grain.

Abstract

This study aimed to evaluate the effect of replacement of ground corn by soybean hulls associated or not to whole soybean grain in the feed supplement on intake, nutrient digestibility, rumen microbial population, and fermentation parameters of growing Nellore steers grazing Brachiaria brizantha cv. Xaraés during rainy season. Were used eight castrated Nellore steers (425 ± 36 kg of body weight (BW)) fitted with ruminal and duodenal cannulas in a replicated 4 × 4 Latin square with a 2 × 2 factorial arrangement, allocated into 4 paddocks of 0.25 ha each, consisting of Brachiaria brizantha cv. Xaraés and supplemented with: (1) ground corn combined with whole soybean grain (SG); (2) ground corn without SG; (3) soybean hulls (SH) combined with SG; and (4) SH without SG. Supplement intake was no affected by SG or SH (mean 2.12 kg-1 d, P > 0.05). There were no interactions between SH and SG on DM and nutrients intake (P > 0.05). The addition of SG reduced the dry matter (DM) intake expressed as % of BW and Kg-1 d, as well forage DM, organic matter (OM), crude protein (CP), neutral detergent fiber (aNDF), and gross energy (GE) intake (P ? 0.01). Animals supplemented with SH without SG had greater digestibility of DM (74.52), OM (77.62), CP (77.51), NDF (71.93) and GE (72.90) than animals supplemented with SH with SG (DM =69.01, OM = 71.92, CP = 72.81, NDF = 66.01, GE =68.01) expressed as % (P ? 0.01). The addition of SG in the supplements declined the ruminal pH and NH3-N (P=0.02). Animals supplemented without SH without SG showed greater Entodinium counts (6.01 n x 104 ml-1, P=0.04), and SG supplementation decreased the numbers of Dasytricha, Isotricha, and ruminal total protozoa (P < 0.01). The abundance of Ruminococcus albus, R. flavefaciens, and Archaeas were higher for SH without SG supplement. Additionally, animals supplemented with SG had lower numbers of Fibrobacter succinogenes. The use of soybean hulls without whole soybean grain in the supplement may be effective to increase fiber digestibility, N retained, R. albus and R. flavefaciens in the rumen of Nellore steers grazing Brachiaria brizantha cv. Xaraés during the rainy season.

Downloads

Download data is not yet available.

Author Biographies

Antônio Josê Neto, Universidade Estadual Paulista

Pesquisador, Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Júlio de Mesquita Filho, Jaboticabal, SP, Brasil.

Yury Tatiana Granja-Salcedo, Universidade Estadual Paulista

Pesquisador, Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Júlio de Mesquita Filho, Jaboticabal, SP, Brasil.

Juliana Duarte Messana, Universidade Estadual Paulista

Pesquisadora, Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Júlio de Mesquita Filho, Jaboticabal, SP, Brasil.

Euclides Braga Malheiros, Universidade Estadual Paulista

Prof., Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP, Brasil.

Ricardo Andrade Reis, Universidade Estadual Paulista

Prof., Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP, Brasil.

Alexandre Vaz Pires, Universidade de São Paulo

Prof., Departamento de Zootecnia, Universidade de São Paulo, USP, Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, SP, Brasil.

Telma Teresinha Berchielli, Universidade Estadual Paulista

Profa., Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP, Brasil.

References

ALLEN, V. G.; BATELLO, C.; BERRETTA, E. J.; HODGSON, J.; KOTHMANN, M.; LI, X.; MCIVOR, J.; MILNE, J.; MORRIS, C.; PEETERS, A.; SANDERSON, M. An international terminology for grazing lands and grazing animals. Grass and Forage Science, Oxford, v. 66, n. 1, p. 22-28, 2011. Doi: 10.1111/j.1365-2494.2010.00780.x

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS - AOAC. Official methods of analysis. 15th ed. Arlington: AOAC, 1990.

BAILE, C. A.; FORBES, M. J. Control feed intake and regulation of energy balance in ruminants, Physiological Reviews, v. 54, n. 1, p.160-214, 1974. DOI: 10.1152/physrev.1974.54.1.160

BARROS, E. E. L.; FONTES, C. A. A.; DETMAN, E.; VIEIRA, R. A. M.; HENRIQUES, L. T.; FERNANDES, A. M. Vícios na estimação da excreção fecal utilizando indicadores internos e óxido crômico em ensaios de digestão com ruminantes. Revista Brasileira de Zootecnia, Viçosa, v. 38, n. 10, 2015-2020, 2009. DOI: 10.1590/S1516-35982009001000023

BARTHRAM, G.T. 1985. Experimental techniques: the HFRO sward stick. In: The hill Farming Research Organization Biennial Report 1984/1985. Penicuik: Hill Farming Research Organization, 1985. p. 29-30.

BATEMAN, H. G.; JENKINS, T. C. Influence of soybean oil in high fiber diets fed to nonlactating cows on ruminal unsaturated fatty acids and nutrient digestibility, Journal of Dairy Science, Champaign, v. 81, n. 9, p. 2451-2458, 1998. DOI: 10.3168/jds.S0022-0302(98)70136-5

BEAUCHEMIN, K. A.; KREUZER, M.; O’MARA, F.; MCALLISTER, T. A. Nutritional management for enteric methane abatement: A review, Australian Journal of Experimental Agriculture, Melbourne, v. 48, n. 2, p. 21-27, 2008. DOI: 10.1071/EA07199

BEAUCHEMIN, K. A.; MCGINN, S. M. Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. Journal of Animal Science, Champaign, v. 84, n. 6, p.1 489-1496, 2006. DOI: 10.2527/2006.8461489x

CARVALHO, I. P. C.; FIORENTINI, G.; CASTAGNINO, P. S.; JESUS, R. B.; MESSANA, J. D.; GRANJA-SALCEDO, Y. T.; DETMANN, E.; PADMANABHA, J.; MCSWEENEY, C. S.; BERCHIELLI, T. T. Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Animal Feed Science Technology, Viçosa, v. 227, p.142-153, 2017. DOI: 10.1016/j.anifeedsci.2017.02.017

CHEN, X. B.; GOMES, M. J. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - an overview of technical details, international feed resources unit. Aberdeen: Rowett Research Institute, 1992.

CHIZZOTTI, M. L.; VALADARES FILHO, S. de C.; VALADARES, R. F. D.; CHIZZOTTI, F. H. M.; TEDESCHI, L.O. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livestock Science, Amsterdam, v. 113, n. 2-3 p. 218-225, 2008. DOI: 10.1016/j.livsci.2007.03.013

CORRIGAN, M. E.; ERICKSON, G. E.; KLOPFENSTEIN, T. J.; LUEBBE, M. K.; VANDER POL, K. J.; MEYER, N. F.; BUCKNER, C. D.; VANNESS, S. J.; HANFORD, K. J. Effect of corn processing method and corn wet distillers grains plus solubles inclusion level in finishing steers, Journal of Animal Science, Champaign, v. 87, n. 10, p. 3351-3362, 2009. DOI: 10.2527/jas.2009-1836

COSTA E SILVA, L. F.; VALADARES FILHO, S. de C.; CHIZZOTTI, M. L.; ROTTA, P. P.; PRADOS, L. F.; VALADARES, R. F. D.; ZANETTI, D.; BRAGA, J. M. D. S. Creatinine excretion and relationship with body weight of Nellore cattle, Revista Brasileira de Zootecnia, Viçosa, v. 41, n. 3, p. 807-810, 2012. DOI: 10.1590/S1516-35982012000300046

CZERKAWSKI, J. W. Fate of metabolic hydrogen in the rumen, The Proceedings of the Nutrition Society, London, v. 31, n. 2, p.141-146, 1972.

CZERKAWSKI, J. W. Effect of linseed oil fatty acids and linseed oil on rumen fermentation in sheep, Journal of Agriculture Science, London, v. 81, n. 3, p. 517-531, 1973. DOI: 10.1017/S0021859600086573

CZERKAWSKI, J. W.; CHRISTIE, W. W.; BRECKENRIDGE, G.; HUNTER, M. L. Changes in rumen metabolism of sheep given increasing amounts of linseed oil in their diet, British Journal of Nutrition, Cambridge, v. 34, n. 1, p. 25-44, 1975. DOI: 10.1017/s0007114575000074

D’AGOSTO, M. T.; CARNEIRO, M. E. Evaluation of lugol solution used for counting rumen ciliates, Revista Brasileira de Zoologia, São Paulo, v. 16, n. 3, p. 725-729, 1999. DOI: 10.1590/S0101-81751999000300011

DEHORITY, B. A. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Applied Environmental Microbiology, Washington, v. 48, n. 4, p. 182-185, 1984.

DENMAN, S. E., MCSWEENEY, C. S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, Amsterdam, v. 58, n. 3, p. 572-582, 2006. DOI: 10.1111/j.1574-6941.2006.00190.x

DENMAN, S. E.; TOMKINS, N.; MCSWEENEY, C. S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiology Ecology, v. 62, n. 3, 313-322, 2007. doi: 10.1111/j.1574-6941.2007.00394.x

DOREAU, M.; FERLAY, A. Effect of dietary lipids on nitrogen metabolism in the rumen. A review, Livestock Science, Amsterdam, v. 43, n. 2, p. 97-110, 1995. DOI: 10.1016/0301-6226(95)00041-I

DROUILLARD, J. S., Utilization of crude glycerin in beef cattle. In: MAKKAR, H. P. S. (Ed.). Biofuel co-products as livestock feed - opportunities and challenges. Rome: Food and agriculture organization of the United Nation, 2012. p. 155-161

FENNER, H. Methods for determining total volatile bases in rumen fluid by steam distillation. Journal of Dairy Science, Champaign, v. 48, p. 249-251, 1965. DOI: 10.3168/jds.S0022-0302(65)88206-6

FUENTES, M. C.; CALSAMIGLIA, S.; CARDOZO, P. W.; VLAEMINCK, B. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Journal of Dairy Science, v. 92, n. 2, p. 4456-4466, 2009. DOI: 10.3168/jds.2008-1722

GOMEZ-INSUASTI, A. S.; GRANJA-SALCEDO, Y. T.; CASTAGNINO, P. S.; VIEIRA, B. R.; MALHIEROS, E. B.; BERCHIELLI, T. T. The effect of lipid sources on intake, rumen fermentation parameters and microbial protein synthesis in Nellore steers supplemented with glycerol. Animal Production Science, Melbourne, v. 54, n. 10, p. 1871-1876, 2014. DOI: 10.1071/AN14394

GOMEZ-INSUASTI, A. S.; GRANJA-SALCEDO, Y. T.; ROSSI, L. G.; VIEIRA, B. R.; BERCHIELLI, T. T. Effect of soybean oil availabilities on rumen biohydrogenation and duodenal flow of fatty acids in beef cattle fed a diet with crude glycerine, Archives of Animal Nutrition, Abingdon, v.72, n. 4, p. 308-320, 2018. DOI: 10.1080/1745039X.2018.1492805

GRANJA-SALCEDO, Y. T.; MESSANA, J. D.; SOUZA V. C.; DIAS, L. A. V.; KISHI, L. T.; REBELO, L. R.; BERCHIELLI, T. T. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. British Journal of Nutrition, v. 118, n. 9, p. 651-660, 2017c. DOI: 10.1017/S0007114517002689

GRANJA-SALCEDO, Y. T.; RAMIREZ-USCATEGUI, R. A.; MACHADO, E. G.; MESSANA, J. D.; KISHI, L. T.; DIAS, A. V. L.; BERCHIELLI, T. T. Studies on bacterial community composition are affected by the time and storage method of the rumen content. Plos One, San Francisco, v. 12, n. 4, e0176701, 2017a. DOI: 10.1371/journal.pone.0176701

GRANJA-SALCEDO, Y. T.; RIBEIRO C. S. J.; JESUS, R. B. de; GOMEZ-INSUASTI, A. S.; RIVERA, R. A.; MESSANA, J. D.; CANESIN, R. C; BERCHIELLI, T. T. Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers, Archives of Animal Nutrition, v. 70, n. 1, p. 17-32, 2016. DOI: 10.1080/1745039X.2015.1117562

GRANJA-SALCEDO. Y. T.; SOUZA, V. C.; DIAS, L. A. V.; GOMEZ-INSUASTI, A. S.; MESSANA, J. D.; BERCHIELLI, T. T. Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Animal Feed Science and Technology, v. 225, p. 195-204, 2017b. DOI: 10.1016/j.anifeedsci.2017.01.021

HARFOOT, C. G.; HAZLEWOOD, G. P. Lipid metabolism in the rumen. In: HOBSON P. N.; STEWART, C. S. (Ed.). The rumen microbial ecosystem. London: Chapman and Hall, 1997.

HENDERSON, C. The effects of fatty acids on pure cultures of rumen bacteria. The Journal of Agriculture Science, London, v. 81, n. 1, p.107-112, 1973. DOI: 10.1017/S0021859600058378

HOOK, E. S.; STEELE, A. M.; NORTHWOOD, S. K.; WRIGHT, G. A. D.; MCBRIDE, W. B. Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microbial Ecology, New York, v. 62, n. 1, p. 94-105, 2011. DOI: 10.1007/s00248-011-9881-0

HOOK, S. E.; WRIGHT, A. D. G.; MCBRIDE, B. W. Methanogens: methane producers of the rumen and mitigation strategies. Archaea, Victoria, v. 2010, 945785, 2010. DOI: 10.1155/2010/945785

HRISTOV, A. N.; IVAN, M.; MCALLISTER, T. A. In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high concentrate, barley-based diet. Journal of Animal Science, Champaign, v. 82, n. 9, p. 2693-2704, 2004. DOI: 10.2527/2004.8292693x

JENKINS, T. C. Lipid metabolism in the rumen. Journal of Dairy Science, Champaign, v. 76, n. 12, p. 3851-3863, 1993. DOI: 10.3168/jds.S0022-0302(93)77727-9

JOHNSON, A. D. Sample preparation and chemical analysis of vegetation. In: MANEJTE, L. T. (Ed.). Measurement of grassland vegetation and animal production. Aberustwysth: Commonweath Agricultural Bureax, 1978. p. 96-102.

KAMRA, D. N. Rumen microbial ecosystem. Current Science, Bangalore, v. 89, n. 1, p.124-135, 2005.

KEWELOH, H.; HEIPIEPER, H. J. Trans unsaturated fatty acids in bacteria. Lipids, Chicago, v. 31, n. 2, p. 129-137, 1996. DOI: 10.1007/bf02522611

KHAFIPOUR, E.; LI, S.; PLAIZIER, J. C.; KRAUSE, D. O. (2009). Rumen microbiome composition determined using two nutritional models of subacuteruminal ácidosis. Applied Environmental Microbiology, v. 75, n. 22, p. 7115-7124. DOI: 10.1128/AEM.00739-09

KHATTAB, H. M.; GADO, H. M.; KHOLIF, A. E.; MANSOUR, A. M.; KHOLIF, A. M. The potential of feeding goats sun dried rumen contents with or without bacterial inoculums as replacement for berseem clover and the effects on milk production and animal health. Journal of Dairy Science, Champaign, v. 6, n. 5, p. 267-277, 2001. DOI: 10.3923/ijds.2011.267.277

LOURENÇO, M.; RAMOS M. E.; WALLACE, R. J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal, Cambridge, v. 4, n. 7, p. 1008-1023, 2010. DOI: 10.1017/S175173111000042X

MAIA, M. R.; CHAUDHARY, L. C.; BESTWICK, C. S.; RICHARDSON, A. J.; MCKAIN, N.; LARSON, T. R.; GRAHAM, I. A.; WALLACE, R. J. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC microbiology, London, v. 10, n. 10, p. 52, 2010. DOI: 10.1186/1471-2180-10-52

MARTEL, C. A.; TITGEMEYER, E. C.; MAMEDOVA, L. K.; BRADFORD, B. J. Dietary molasses increases ruminal pH and enhances ruminal biohydrogenation during milk fat depression. Journal of Dairy Science, Champaign, v. 94, n. 3, p. 3995-4004, 2011. DOI: 10.3168/jds.2011-4178

MCDONNELL, M. L.; KLOPFENSTEIN, T. J.; MERRILL, J. K. Soybean hulls as energy source for ruminants. Nebraska Beef Cattle Reports, Lincoln, v. 43, p. 54-56, 1982.

MILLER, L. A.; MOORBY, J. M.; DAVIES, D. R.; HUMPHREYS, M. O.; SCOLLAN, N. D.; MACRAE, J. C.; THEODOROU, M. K; Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass and Forage Science, Oxford, v. 56, n. 4, p. 383-394, 2001. DOI: 10.1046/j.1365-2494.2001.00288.x

MOORBY, J. M.; EVANS, R. T.; SCOLLAN, N. D.; MACRAE, J. C.; THEODOROU, M. K. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne). Evaluation in dairy cows in early lactation. Grass and Forage Science, Oxford, v. 61, n. 1, p. 52-59, 2006. DOI: 10.1111/j.1365-2494.2006.00507.x

NETO, A. J.; MESSANA, J. D.; GRANJA-SALCEDO, Y. T.; CASTAGNINO, P. S.; FIORENTINI, G.; REIS, R. A.; BERCHIELLI, T. T. Effect of starch level in supplement with or without oil source on diet and apparent digestibility, rumen fermentation and microbial population of Nellore steers grazing tropical grass. Livestock Science, v. 202, 171-179, 2017. DOI: 10.1016/j.livsci.2017.06.007

NEWBOLD, C. J.; LASSALAS, B.; JOUANY, J. P. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Letters in Applied Microbiology, Oxford, v. 21, n. 4, p. 230-234, 1995. DOI: 10.1111/j.1472-765X.1995.tb01048.x

NATIONAL RESEARCH COUNCIL'S - NRC. Nutrient requirements of beef cattle. 7. ed. Washington: The National Academies Press, 2000.

ØRSKOV, E. R.; MACLEOD, N. A. Dietary-induced thermogenesis and feed evaluation in ruminants. Proceedings of the Nutrition Society, London, v. 49, n. 2, p. 227-237, 1990. DOI: 10.1079/PNS19900026

PALMQUIST, D. L.; CONRAD, H. R. Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. Journal of Dairy Science, Champaign, v. 54, n. 7, p. 1025-1033, 1971. DOI: 10.3168/jds.S0022-0302(71)85966-0

PARSONS, G. L.; SHELOR, M. K.; DROUILLARD, J.S. Performance and carcass traits of finishing heifers fed crude glycerin. Journal of Animal Science, Champaign, v. 87, n. 2, p. 653-657, 2009. DOI: 10.2527/jas.2008-1053

PATRA, A. K.; YU, Z. Effects of coconut and fish oils on methane production, fermentation, abundance and diversity of rumen microbial populations in vitro. Journal of Dairy Science, Champaign, v. 96, n. 3, p. 1782-1792, 2013. DOI: 10.3168/jds.2012-6159

POPP, J.; LAKNER, Z.; HARANGI-RÁKOS, M.; FÁRI, M. The effect of bioenergy expansion: food, energy, and environment, Renewable & Sustainable Energy Reviews, Amsterdam, v. 32, p. 559-578, 2014. DOI: 10.1016/j.rser.2014.01.056

RUSSELL, J. B.; SNIFFEN, C. J.; VAN SOEST, P. J. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. Journal of Dairy Science, Champaign, v. 66, n. 4, p. 763-775, 1983. DOI: 10.3168/jds.S0022-0302(83)81856-6

SAIRANEN, A.; KHALILI, H.; NOUSIAINEN, J. I.; AHVENJARVI, S.; HUHTANEN, P. The effect of concentrate supplementation on nutrient flow to the omasum in dairy cows receiving freshly cut grass. Journal of Dairy Science, Champaign, v. 88, n. 4, p. 1443-1453, 2005. DOI: 10.3168/jds.S0022-0302(05)72812-5

SALIBA, E. O. S.; GONÇALVES, N. C.; BARBOSA, G. S. S. C.; BORGES, A. L. C. C.; RODRIGUEZ, N. M.; MOREIRA, G. R.; SILVA, F. A. Evaluation of the infrared spectroscopy method for the quantification of nanolipe marker in feces of dairy cattle. In: OLTJEN, J. W.; KEBREAB, E.; LAPIERRE, H. Energy and protein metabolism and nutrition in sustainable animal production. California: Wageningen Academic Publisher, 2013. p. 247-248.

SANTOS, S. A.; VALADARES FILHO, S. de C.; DETMANN, E.; VALADARES, R. F. D.; RUAS, J. R. M.; AMARAL, P. M. Different forage sources for F1 Holstein × Gir dairy cows. Livestock Science, Amsterdam, v. 142, n. 1-3, p. 48-58, 2011. DOI: 10.1016/j.livsci.2011.06.017

SCHRÖDER, A.; SÜDEKUM, K. H.; SCHOONMAKER, J. P.; CECAVA, M. J.; FAULKNER D. B.; FLUHARTY, F. L.; ZERBY, H. N.; LOERCH, S. C. Effect of source of energy and rate of growth on performance, carcass characteristics, ruminal fermentation, and serum glucose and insulin of early-weaned steers. Journal of Animal Science, Champaign, v. 81, n. 4, p. 843-855, 2003. DOI: 10.2527/2003.814843x

SIDDHURAJU, P.; MAKKAR, H. P. S.; BECKER, K. The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry, Norwich, v. 78, n. 2, p. 187-205, 2002. DOI: 10.1016/S0308-8146(01)00398-3

SULLIVAN, H. M.; BERNARD, J. K.; AMOS, H. E.; JENKINS, T. C. Performance of lactating dairy cows fed whole cottonseed with elevated concentrations of free fatty acids in the oil. Journal of Dairy Science, Champaign, v. 87, n. 3, p. 665-671, 2004. DOI: 10.3168/jds.S0022-0302(04)73209-9

TAGHINEJAD, M.; NIKKHAH, A.; SADEGHI, A. A.; RAISALI, G.; CHAMANI, M. (2009) Effects of gamma irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of full-fat soybean. Asian-Australasian Journal of Animal Sciences, v. 22, n. 4, p. 534-541. DOI: 10.5713/ajas.2009.80567

TAJIMA, K.; AMINOV, R. I.; NAGAMINE, T.; MATSUI, H.; NAKAMURA, M.; BENNO, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and environmental microbiology, Washington, v. 67, n. 6, p. 2766-2774, 2001. DOI: 10.1128/AEM.67.6.2766-2774.2001

VALADARES, R. F. D.; BRODERICK, G. A.; VALADARES FILHO, S. C.; CLAYTON, M. K. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. Journal of Dairy Science, Champaign, v. 82, n. 12, p. 2686-2699, 1999. DOI: 10.3168/jds.S0022-0302(99)75525-6

VALADARES FILHO, S. de C., MACHADO, P. A. S., CHIZZOTTI, M. L., AMARAL, H. F., MAGALHÃES, C. A., ROCHA JÚNIOR, V. R.; CAPELLE, E. R. CQBAL 3.0. Brazilian tables of the chemical composition of feeds for ruminants. 2010. Available at: https://scholar.google.com.br/citations? user=2kR2DtgAAAAJ&hl=pt-BR. Accessed at: 20 set. 2019.

VALENTE, T. N. P.; DETMANN, E.; QUEIROZ, A. C.; VALADARES FILHO, S. C.; GOMES, D. I.; FIGUEIRAS, J. F. Evaluation of ruminal degradation profiles of forages using bags made from different textiles. Revista Brasileira de Zootecnia, viçosa, v. 40, v. 10, p. 2565-2573, 2011. DOI: 10.1590/S1516-35982011001100039

VAN SOEST, P. J. (1994). Nutritional ecology of the ruminant. 2. ed. New York: Cornell University Press.

VAN SOEST, P. J.; ROBERTSON, J. B.; LEW, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, Champaign, v. 74, n. 10, p. 3583-3597, 1991. DOI: 10.3168/jds.S0022-0302(91)78551-2

Downloads

Published

2019-10-16

How to Cite

Josê Neto, A., Granja-Salcedo, Y. T., Messana, J. D., Malheiros, E. B., Reis, R. A., Pires, A. V., & Berchielli, T. T. (2019). Soybean hulls as feed substitute of ground corn can increase the fiber digestibility and bacterial fibrolytic profile of grazing Nellore steers during the rainy season. Semina: Ciências Agrárias, 40(6Supl3), 3577–3594. https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3577

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.