Modelo de Aprendizado de Máquina para Avaliação Automática do Desenvolvimento Motor Grosso em Crianças utilizando Posenet
DOI:
https://doi.org/10.5433/1679-0375.2023.v44.48131Palavras-chave:
avaliação automática, aprendizado de máquina, desenvolvimento motor, TGMD-3Resumo
As habilidades motoras grossas são atividades que envolvem os grandes músculos do corpo humano como sentar, saltar e correr. O Test of Gross Motor Development, ou TGMD, é um teste muito utilizado por pesquisadores, pediatras, fisioterapeutas e educadores de diversos países para avaliar essas habilidades em crianças na faixa etária de 3 até 11 anos. Parte importante do teste é que o movimento executado pelas crianças precisa ser gravado e avaliado por dois ou mais profissionais. O processo de avaliação é trabalhoso e leva tempo, sendo sua automatização um dos principais pontos a serem desenvolvidos. Nos últimos anos, têm sido propostos métodos para automatizar a avaliação dos movimentos de acordo com os critérios do TGMD. A hipótese investigada neste trabalho é a de que é possível induzir um modelo de machine learning para identificar se o movimento da criança está correto, considerando apenas o primeiro critério da habilidade de salto do TGMD-3. Para isso, foi extraído o esqueleto das crianças utilizando o PoseNet. Foi utilizado um dataset de 350 imagens de crianças brasileiras entre 3 e 11 anos realizando o movimento preparatório para o salto. Os resultados experimentais mostram uma acurácia de 84%
Downloads
Referências
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., . . . Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Arxiv.
Bisi, M., Pacini Panebianco, G., Polman, R., & Stagni, R. (2017). Objective assessment of movement competence in children using wearable sensors: An instrumented version of the TGMD-2 locomotor subtest. Gait & Posture, 56, 42–48. DOI: https://doi.org/10.1016/j.gaitpost.2017.04.025
Clark, J. E. (2005). From the Beginning: A Developmental Perspective on Movement and Mobility. Quest, 57, 37–45. DOI: https://doi.org/10.1080/00336297.2005.10491841
Estimativa de pose humana em tempo real no navegador com TensorFlow.js. (2018). TensorFlow.
Gallahue, D., Ozmun, J., & Goodway, J. (2013). Compreendendo o desenvolvimento motor-: bebês, crianças, adolescentes e adultos. AMGH Editora.
Gonzalez, S., Alvarez, V., & Nelson, E. (2019). Do Gross and Fine Motor Skills Differentially Contribute to Language Outcomes? A Systematic Review. Frontiers In Psychology, 10, 1–16. DOI: https://doi.org/10.3389/fpsyg.2019.02670
Henderson, S., Sugden, D., & Barnett, A. (2007). Movement assessment battery for children. (2nd. ed.). APA Psyc. DOI: https://doi.org/10.1037/t55281-000
Jo, B., & Kim, S. (2022). Comparative analysis of openpose, posenet, and movenet models for pose estimation in mobile devices. Traitement du Signal, 39(14), 119–124. DOI: https://doi.org/10.18280/ts.390111
Kiphard, E., & Schilling, V. (1974). KöperKoordinationstest für kinder KTK. Weinheim: Beltz Test.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, L. (2014). Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.). Computer Vision – ECCV 2014 (pp. 740-755, Lecture Notes in Computer Science, Vol. 8693). Springer Cham. DOI: https://doi.org/10.1007/978-3-319-10602-1_48
Manoel, E., & Connolly, K. (1995). Variability and the development of skilled actions. International Journal Of Psychophysiology, 19, 129–147. DOI: https://doi.org/10.1016/0167-8760(94)00078-S
Marques, I., Santos, C., & Medina-Papst, J. (2017). Teste de desenvolvimento motor para educação física escolar.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal Of Machine Learning Research, 12, 2825–2830.
Rosa Neto, F. (2002). Manual de avaliação motora. Artmed.
Spinosa, R. M. d. O. (2019). Demonstração digital de habilidades motoras aplicada à instrumentos de valiação do desenvolvimento motor [Doctoral dissertation, Universidade Estadual de Londrina]. Biblioteca Digital. http://www.bibliotecadigital.uel.br/document/?code=vtls000222135
Suzuki, S., Amemiya, Y., & Sato, M. (2019). Enhancement of gross-motor action recognition for children by cnn with openpose. In Institute of Electrical and Electronics Engineers, IECON 2019 [Conference]. 45th Annual Conference of The IEEE Industrial Electronics Society, Lisbon, Portugal. DOI: https://doi.org/10.1109/IECON.2019.8927828
Suzuki, S., Amemiya, Y., & Sato, M. (2020). Enhancement of child gross-motor action recognition by motional time-series images conversion. In Institute of Electrical and Electronics Engineers, IEEE/SICE International Symposium on System Integration (SII), [Symposium]. Honolulu, HI, USA. DOI: https://doi.org/10.1109/SII46433.2020.9025833
Suzuki, S., Amemiya, Y., & Sato, M. (2021). Skeletonbased visualization of poor body movements in a child’s gross-motor assessment using convolutional auto-encoder. In Institute of Electrical and Electronics Engineers, IEEE International Conference on Mechatronics (ICM) [Conference]. Kashiwa, Japan. DOI: https://doi.org/10.1109/ICM46511.2021.9385618
Ulrich, D. (2000). The test of gross motor development. PRO-ED.
Ulrich, D. (2017). Introduction to the Special Section: Evaluation of the Psychometric Properties of the TGMD-3. Journal Of Motor Learning and Development, 5, 1–4. DOI: https://doi.org/10.1123/jmld.2017-0020
Valentini, N., Zanella, L., & Webster, E. (2017). Test of Gross Motor Development—Third Edition: Establishing Content and Construct Validity for Brazilian Children. Journal of Motor Learning and Development, 5, 15–28. DOI: https://doi.org/10.1123/jmld.2016-0002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Edson Luiz Pilati Filho, Rodrigo Martins de Oliveira Spinosa, Jacques Duílio Brancher
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os Direitos Autorais para artigos publicados nesta revista são de direito do autor. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais. A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.