Robust Stabilization of D-LQR-LMI Controllers by Norm-Bounded Uncertainties
DOI:
https://doi.org/10.5433/1679-0375.2024.v45.51613Keywords:
LQR, LMIs, robust D-stability, norm-bounded uncertaintiesAbstract
This study focuses on the synthesizing of Linear Quadratic Regulators (LQR) applied to linear systems with norm-bounded uncertainty models. Therefore, the main objective is to establish new LMI conditions to guarantee the robust D-stability so that the transient response can be achieved through classical LMI restrictions. The mathematical analysis is based on the control design (by states feedback) of the power system stabilizer and the flexible AC transmission systems (FACTS) controllers, where these devices are able to operate under actuator faults. Finally, comparative analyses will be conducted with the literature considering factors such as the practical applicability and the transient response of signals of interest, including the evaluation of the controller behavior in two scenarios, i.e., with fully operational actuators and under partial failures. Moreover, the LMI structure of the proposed theorem offers greater design flexibility, especially for high values of the parameters of the disk D(q,r).
Downloads
References
Bernardo, R. T., Lugnani, L., & Dotta, D. (2017). Projeto de estabilizadores de sistemas de potência com sincrofasores utilizando otimização não convexa. In Sociedade Brasileira de Automática. Simpósio Brasileiro de Automação Inteligente - SBAI 2017 [Anais]. XIII Simpósio Brasileiro de Automação Inteligente, Porto Alegre, Brasil. https://www.sba.org.br/Proceedings/SBAI/SBAI2017/SBAI17/papers/paper_48.pdf
Bimarta, R., & Kim, K. H. (2020). A robust frequency-adaptive current control of a grid-connected inverter based on lmi-lqr under polytopic uncertainties. IEEE Access, 8, 28756–28773. DOI: https://doi.org/10.1109/ACCESS.2020.2972028
Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory (Vol. 15). SIAM. DOI: https://doi.org/10.1137/1.9781611970777
Caun, R. P., Assunção, E., & Minhoto, M. C. T. (2021). H2/H∞ formulation of lqr controls based on lmi for continuous-time uncertain systems. International Journal of Systems Science, 52(3), 612–634. DOI: https://doi.org/10.1080/00207721.2020.1836283
Caun, R. P., Assunção, E., Minhoto, M. C. T., & Caun, A. P. (2018). Lqr-lmi control applied to convex-bounded domains. Cogent Engineering, 5(1), 1457206. DOI: https://doi.org/10.1080/23311916.2018.1457206
Chilali, M., & Gahinet, P. (1996). H∞ Design with pole placement constraints: An lmi approach. IEEE Transactions on Automatic Control, 41(3), 358–367. DOI: https://doi.org/10.1109/9.486637
Ghorbani, M., Tepljakov, A., & Petlenkov, E. (2023). Robust d-stability analysis of fractional-order controllers. In IEEE Xplore. 2023 American Control Conference (ACC) [Conference]. 2023 American Control Conference (ACC), San Diego, California. DOI: https://doi.org/10.23919/ACC55779.2023.10156257
Kumar, E. V., Raaja, G. S., & Jerome, J. (2016). Adaptive pso for optimal lqr tracking control of 2 dof laboratory helicopter. Applied Soft Computing, 41, 77–90. DOI: https://doi.org/10.1016/j.asoc.2015.12.023
Mohanty, A. K., & Barik, A. K. (2011). Power system stability improvement using facts devices. International Journal of Modern Engineering Research, 1(2), 666–672.
Moheimani, S. R., & Petersen, I. R. (1996). Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback. Automatica, 32(4), 575–579. DOI: https://doi.org/10.1016/0005-1098(95)00178-6
Olalla, C., Leyva, R., El Aroudi, A., & Queinnec, I. (2009). Robust lqr control for pwm converters: An lmi approach. IEEE Transactions on Industrial Electronics, 56(7), 2548–2558. DOI: https://doi.org/10.1109/TIE.2009.2017556
Ouhib, L., & Kara, R. (2023). Proportional observer design based on d-stability and finsler’s lemma for takagi-sugeno systems. Fuzzy Sets and Systems, 452, 61–90. DOI: https://doi.org/10.1016/j.fss.2022.07.006
Ouhib, L., & Kara, R. (2024). Observer design based on d-stability and finsler’s lemma for interconnected takagi–sugeno systems with immeasurable premise variables. Journal of Control and Decision, 11(3), 495–519. DOI: https://doi.org/10.1080/23307706.2023.2192002
Paserba, J. J. (2004). How facts controllers benefit ac transmission systems. IEEE Power Engineering Society General Meeting, 2, 1257–1262. DOI: https://doi.org/10.1109/PES.2004.1373058
Pradhan, J. K., & Ghosh, A. (2022). Multivariable robust proportional-integral-derivative control for linear quadratic compensation of a class of norm-bounded uncertain systems. Journal of Dynamic Systems, Measurement, and Control, 144(10), 101003. DOI: https://doi.org/10.1115/1.4054950
Rezende, J. C., Carvalho, L., Neto, J. R., Costa, M. V., Fortes, E. V., & Macedo, L. H. (2021). Lqr design using lmis and the robust d-stability criterion for low-frequency oscillation damping in power systems. In IEEE Xplore. 2021 14th IEEE International Conference on Industry Applications (INDUSCON) [Conference]. 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brasil. DOI: https://doi.org/10.1109/INDUSCON51756.2021.9529623
Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power system dynamics and stability: With synchrophasor measurement and power system toolbox. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119355755
Shayeghi, H., Safari, A., & Shayaanfar, H. A. (2010). Pss and tcsc damping controller coordinated design using pso in multi-machine power system. Energy Conversion and Management, 51(12), 2930–2937. DOI: https://doi.org/10.1016/j.enconman.2010.06.034
Soliman, H. M., Dabroum, A., Mahmoud, M. S., & Soliman, M. (2011). Guaranteed-cost reliable control with regional pole placement of a power system. Journal of the Franklin Institute, 348(5), 884–898. DOI: https://doi.org/10.1016/j.jfranklin.2011.02.013
Wei, Y., Su, N., Zhao, L., & Cao, J. (2023). LMI based stability condition for delta fractional order system with sector approximation. Chaos, Solitons & Fractals, 174, 113816. DOI: https://doi.org/10.1016/j.chaos.2023.113816
Xia, P., Shi, H., Wen, H., Bu, Q., Hu, Y., & Yang, Y. (2020). Robust lmi-lqr control for dual-active-bridge dc–dc converters with high parameter uncertainties. IEEE Transactions on Transportation Electrification, 6(1), 131–145. DOI: https://doi.org/10.1109/TTE.2020.2975313
Xie, L., De Souza, C. E., & Fragoso, M. D. (1991). H∞ Filtering for linear periodic systems with parameter uncertainty. Systems & Control Letters, 17(5), 343–350. DOI: https://doi.org/10.1016/0167-6911(91)90133-Y
Zheng, W., Zhang, Z., Lam, H.-K., Sun, F., & Wen, S. (2023). LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system. Chaos, Solitons & Fractals, 176, 114060. DOI: https://doi.org/10.1016/j.chaos.2023.114060
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rodrigo da Ponte Caun, Renan Jacob de Carvalho, Edvaldo Assunção, Willian Ricardo Bispo Murbak Nunes, Marcelo Carvalho Minhoto Teixeira, Reginaldo Nunes de Souza

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.