Robust Stabilization of D-LQR-LMI Controllers by Norm-Bounded Uncertainties

Robust Stabilization of D-LQR-LMI Controllers by Norm-Bounded Uncertainties

Authors

DOI:

https://doi.org/10.5433/1679-0375.2024.v45.51613

Keywords:

LQR, LMIs, robust D-stability, norm-bounded uncertainties

Abstract

This study focuses on the synthesizing of Linear Quadratic Regulators (LQR) applied to linear systems with norm-bounded uncertainty models. Therefore, the main objective is to establish new LMI conditions to guarantee the robust D-stability so that the transient response can be achieved through classical LMI restrictions. The mathematical analysis is based on the control design (by states feedback) of the power system stabilizer and the flexible AC transmission systems (FACTS) controllers, where these devices are able to operate under actuator faults. Finally, comparative analyses will be conducted with the literature considering factors such as the practical applicability and the transient response of signals of interest, including the evaluation of the controller behavior in two scenarios, i.e., with fully operational actuators and under partial failures. Moreover, the LMI structure of the proposed theorem offers greater design flexibility, especially for high values of the parameters of the disk D(q,r).

Downloads

Author Biographies

Rodrigo da Ponte Caun, Federal University of Technology of Paraná

Professor, Dr., Electrical Engineering Coordination, UTFPR, Apucarana, PR, Brazil.

Renan Jacob de Carvalho, WEG S. A.

Renan Jacob de Carvalho is an electrical engineer graduated from UTFPR and has an MBA in Data Science and Analytics in progress at ESALQ/USP. He is currently responsible for the development and innovation of quality systems at WEG's Energy unit in Jaraguá do Sul, where he develops projects for automation and analysis of data that make up the main KPIs.

Edvaldo Assunção, Universidade Estadual Paulista

Professor, Dr., Department of Electrical Engineering, UNESP, Ilha Solteira, SP, Brazil

Willian Ricardo Bispo Murbak Nunes, Federal University of Technology of Paraná

Professor, Dr., Electrical Engineering Coordination, UTFPR, Apucarana, PR, Brazil

Marcelo Carvalho Minhoto Teixeira, São Paulo State University

Professor, Dr., Department of Electrical Engineering, UNESP, Ilha Solteira, SP.

Reginaldo Nunes de Souza, Federal University of Technology of Paraná

Professor, Dr., Electrical Engineering Coordination, UTFPR, Apucarana, PR, Brazil.

References

Bernardo, R. T., Lugnani, L., & Dotta, D. (2017). Projeto de estabilizadores de sistemas de potência com sincrofasores utilizando otimização não convexa. In Sociedade Brasileira de Automática. Simpósio Brasileiro de Automação Inteligente - SBAI 2017 [Anais]. XIII Simpósio Brasileiro de Automação Inteligente, Porto Alegre, Brasil. https://www.sba.org.br/Proceedings/SBAI/SBAI2017/SBAI17/papers/paper_48.pdf

Bimarta, R., & Kim, K. H. (2020). A robust frequency-adaptive current control of a grid-connected inverter based on lmi-lqr under polytopic uncertainties. IEEE Access, 8, 28756–28773. DOI: https://doi.org/10.1109/ACCESS.2020.2972028

Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory (Vol. 15). SIAM. DOI: https://doi.org/10.1137/1.9781611970777

Caun, R. P., Assunção, E., & Minhoto, M. C. T. (2021). H2/H∞ formulation of lqr controls based on lmi for continuous-time uncertain systems. International Journal of Systems Science, 52(3), 612–634. DOI: https://doi.org/10.1080/00207721.2020.1836283

Caun, R. P., Assunção, E., Minhoto, M. C. T., & Caun, A. P. (2018). Lqr-lmi control applied to convex-bounded domains. Cogent Engineering, 5(1), 1457206. DOI: https://doi.org/10.1080/23311916.2018.1457206

Chilali, M., & Gahinet, P. (1996). H∞ Design with pole placement constraints: An lmi approach. IEEE Transactions on Automatic Control, 41(3), 358–367. DOI: https://doi.org/10.1109/9.486637

Ghorbani, M., Tepljakov, A., & Petlenkov, E. (2023). Robust d-stability analysis of fractional-order controllers. In IEEE Xplore. 2023 American Control Conference (ACC) [Conference]. 2023 American Control Conference (ACC), San Diego, California. DOI: https://doi.org/10.23919/ACC55779.2023.10156257

Kumar, E. V., Raaja, G. S., & Jerome, J. (2016). Adaptive pso for optimal lqr tracking control of 2 dof laboratory helicopter. Applied Soft Computing, 41, 77–90. DOI: https://doi.org/10.1016/j.asoc.2015.12.023

Mohanty, A. K., & Barik, A. K. (2011). Power system stability improvement using facts devices. International Journal of Modern Engineering Research, 1(2), 666–672.

Moheimani, S. R., & Petersen, I. R. (1996). Optimal guaranteed cost control of uncertain systems via static and dynamic output feedback. Automatica, 32(4), 575–579. DOI: https://doi.org/10.1016/0005-1098(95)00178-6

Olalla, C., Leyva, R., El Aroudi, A., & Queinnec, I. (2009). Robust lqr control for pwm converters: An lmi approach. IEEE Transactions on Industrial Electronics, 56(7), 2548–2558. DOI: https://doi.org/10.1109/TIE.2009.2017556

Ouhib, L., & Kara, R. (2023). Proportional observer design based on d-stability and finsler’s lemma for takagi-sugeno systems. Fuzzy Sets and Systems, 452, 61–90. DOI: https://doi.org/10.1016/j.fss.2022.07.006

Ouhib, L., & Kara, R. (2024). Observer design based on d-stability and finsler’s lemma for interconnected takagi–sugeno systems with immeasurable premise variables. Journal of Control and Decision, 11(3), 495–519. DOI: https://doi.org/10.1080/23307706.2023.2192002

Paserba, J. J. (2004). How facts controllers benefit ac transmission systems. IEEE Power Engineering Society General Meeting, 2, 1257–1262. DOI: https://doi.org/10.1109/PES.2004.1373058

Pradhan, J. K., & Ghosh, A. (2022). Multivariable robust proportional-integral-derivative control for linear quadratic compensation of a class of norm-bounded uncertain systems. Journal of Dynamic Systems, Measurement, and Control, 144(10), 101003. DOI: https://doi.org/10.1115/1.4054950

Rezende, J. C., Carvalho, L., Neto, J. R., Costa, M. V., Fortes, E. V., & Macedo, L. H. (2021). Lqr design using lmis and the robust d-stability criterion for low-frequency oscillation damping in power systems. In IEEE Xplore. 2021 14th IEEE International Conference on Industry Applications (INDUSCON) [Conference]. 14th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brasil. DOI: https://doi.org/10.1109/INDUSCON51756.2021.9529623

Sauer, P. W., Pai, M. A., & Chow, J. H. (2017). Power system dynamics and stability: With synchrophasor measurement and power system toolbox. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119355755

Shayeghi, H., Safari, A., & Shayaanfar, H. A. (2010). Pss and tcsc damping controller coordinated design using pso in multi-machine power system. Energy Conversion and Management, 51(12), 2930–2937. DOI: https://doi.org/10.1016/j.enconman.2010.06.034

Soliman, H. M., Dabroum, A., Mahmoud, M. S., & Soliman, M. (2011). Guaranteed-cost reliable control with regional pole placement of a power system. Journal of the Franklin Institute, 348(5), 884–898. DOI: https://doi.org/10.1016/j.jfranklin.2011.02.013

Wei, Y., Su, N., Zhao, L., & Cao, J. (2023). LMI based stability condition for delta fractional order system with sector approximation. Chaos, Solitons & Fractals, 174, 113816. DOI: https://doi.org/10.1016/j.chaos.2023.113816

Xia, P., Shi, H., Wen, H., Bu, Q., Hu, Y., & Yang, Y. (2020). Robust lmi-lqr control for dual-active-bridge dc–dc converters with high parameter uncertainties. IEEE Transactions on Transportation Electrification, 6(1), 131–145. DOI: https://doi.org/10.1109/TTE.2020.2975313

Xie, L., De Souza, C. E., & Fragoso, M. D. (1991). H∞ Filtering for linear periodic systems with parameter uncertainty. Systems & Control Letters, 17(5), 343–350. DOI: https://doi.org/10.1016/0167-6911(91)90133-Y

Zheng, W., Zhang, Z., Lam, H.-K., Sun, F., & Wen, S. (2023). LMIs-based exponential stabilization for interval delay systems via congruence transformation: Application in chaotic Lorenz system. Chaos, Solitons & Fractals, 176, 114060. DOI: https://doi.org/10.1016/j.chaos.2023.114060

Downloads

Published

2024-12-27

How to Cite

da Ponte Caun, R., Jacob de Carvalho, R., Assunção, E., Bispo Murbak Nunes, W. R., Carvalho Minhoto Teixeira, M., & Nunes de Souza, R. (2024). Robust Stabilization of D-LQR-LMI Controllers by Norm-Bounded Uncertainties. Semina: Ciências Exatas E Tecnológicas, 45, e51613. https://doi.org/10.5433/1679-0375.2024.v45.51613

Issue

Section

Engineerings

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...