Physicochemical evaluation of Portland cement produced in Brazil via X-ray fluorescence and mechanical strength

Physicochemical evaluation of Portland cement produced in Brazil via X-ray fluorescence and mechanical strength

Authors

DOI:

https://doi.org/10.5433/1679-0375.2020v41n1p3

Keywords:

EDXRF. Portland Cement. Mechanical resistance. Bogue’s potential.

Abstract

Portland cement is the basic component of concrete. X-ray fluorescence spectroscopy is an established analytical technique used in cement plants throughout the world. A comparative study of the elemental constituents presents in Portland cements produced in Brazil was carried out via EDXRF analyses. The main elements identified and quantified in cement samples were Al, Ca, Fe, K, Si, S, Ti, Mn, Zn and Sr. The main components of cement are lime (CaO), silica (SiO2), alumina (Al2O3), iron oxide (Fe2O3), magnesia (MgO), alkalis (Na2O and K2O ) and sulfates (SO3). The components C3S, C2S, C3A and C4AF were calculated via Bogue’s formula. Mortar with water, cement and sand was produced for each cement brand, and analyses were performed in order to evaluate the mechanical compressive strength. The bodies were broken after curing over the following timeframes: 1, 3, 7, 28 and 91 days. The results from mechanical tests were correlated with the components found in the different cement brands. Our results indicate that initial compressive strength can vary greatly from one brand to another and the values for the Bogue’s potentials show large differences for C3S and C2S. It was showed by strength tests, how it is possible to predict the behavior of mortars made with these cements. Cements proved to be good for the manufacture of mortars and meet the Brazilian’s specifications.

Downloads

Download data is not yet available.

Author Biographies

Dawilson Menna Junior, Universidade de Sorocaba

Graduation in Civil Engineering from the Faculty of Engineering of Sorocaba. Civil engineer at the Universidade de Sorocaba.

Victor Manuel Cardoso Figueiredo Balcão, Universidade de Sorocaba

PhD in Biotechnology (Food Science and Engineering) and by the Portuguese Catholic University. PhD from the Universidade de São Paulo, PhD in Biochemical-Pharmaceutical Technology. Post-Doctorate in Enzyme Engineering in Madrid.

Marco Vinicius Chaud, Universidade de Sorocaba

PhD in Pharmaceuticals and Medicines from the University of São Paulo and postdoctoral degree from the Universidade de São Paulo. Full Professor of the Pharmacy Course at the Universidade de Sorocaba

Marta Maria Duarte Carvalho Vila, Universidade de Sorocaba

PhD in Pharmaceuticals and Medicines from the Universidade de São Paulo and postdoctoral degree from the Universidade de São Paulo. Full Professor of the Pharmacy Course at the Universidade de Sorocaba

Norberto Aranha, Universidade de Sorocaba

PhD in Pharmaceuticals and Medicines from the Universidade de São Paulo and postdoctoral degree from the Universidade de São Paulo. Professor of the Pharmacy Course at the Universidade de Sorocaba

Valquiria Miwa Hanai Yoshida, Universidade de Sorocaba

PhD in Pharmaceutical Sciences from Universidade Estadual Paulista Júlio de Mesquita Filho. Full Professor at the Universidade de Sorocaba

Jose Martins de Oliveira Junior, Universidade de Sorocaba

PhD in Sciences, with emphasis on Nuclear Physics from the Universidade de São Paulo. Full Professor Universidade de Sorocaba

References

ABCP - ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND. Guia básico de utilização do cimento Portland. BT- 106. 7.ed. São Paulo: ABCP, 2002. 28 p. Available from: <http://www.abcp.org.br/cms/wp-content/ uploads/2016/05/BT106_2003.pdf>. Acess on: 10 Nov. 2019

ABELMANN, R. A.; SMALLBONE, A. H. Principles of X-ray analysis and instrument design for cement production and slurry process control applications: Miner. Process, Basileia, v. 8, n. 7, p. 10-16, 1967.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: cimento Portland: determinação da resistência à compressão. Rio de Janeiro: ABNT, 1996.

BAHJAT, R. J. M.; LATIF, K. M. Analysis of Iraqi cement by X-ray Fluorescence. Iraqi J. Chem., Al-Hillah, v. 27, n. 4, p. 1-14, 2001.

BOGUE, R. H. The chemistry of Portland cement. New York: Reinhold Publishing, 1947. 572p.
COOPER, J. A.; WHEELER, B. D.; BARTELL, D. M. Rapid multielement analysis of Portland cement, raw mix and raw materials. J. Chem. Technol. Biotechnol., Oxford, v. 7, n. 2, p. 68-74, 1976.

ELBAGERMIA, M. A.; ALAJTALA, A. I.; ALKERZAB, M. Chemical analysis of available Portland cement in libyan market using X-Ray Fluorescence. Int. J. Chem., Mol., Nucl., Mat. Metall. Eng., [S. l.], v. 8, n. 1, p. 73-75, 2014.

FERRARI, F. Cenno storico sui legante idraulici. II Cemento, [S. l.], v. 65, n. 762, p. 147-50, 1968.

FRANCO JUNIOR, J. O. Estudo comparativo de métodos analíticos para determinação de Fe e Ti em cimento Portland. 1999. Dissertação (Mestrado) – Universidade Federal da Bahia, Bahia, 1999.

GOBBO, L. A. Os compostos do clínquer Portland: sua caracterização por difração de raios-X e quantificação por refinamento de Rietveld. 2003. Dissertação (Mestrado) - Universidade de São Paulo, São Paulo, 2003.

KAEFER, L. F. A evolução do concreto armado. São Paulo: Unesp, 1998. PEF 5707 – Concepção, projeto e realização das estruturas: aspectos históricos. Available: <http://wwwp.feb.unesp.br/lutt/Concreto%20Protendido/HistoriadoConcreto.pdf> Accessed: 10 Nov. 2019.

MARCIANO JUNIOR, E.; ZAMPIERI, V. A.; CENTURIONE, S. L. Considerations about the quantitative study of Portland cement clinquer through reflected light microscopy. In: INTERNATIONAL CONFERENCE ON CEMENT MICROSCOPY, 9., 1987, Reno. Proceedings [. . . ]. Reno: ICMA, 1987. p. 175-182.

MINDLESS, S.; YOUNG, J. F.; DARWIN, D. Concrete. Nova Jersey: Prentice Hall, 2003. MOLARI, R.; ENDO, L. Y.; APPOLONI, C. R.; MELQUIADES, F. L.; PORTEZAN FILHO, O. PARREIRA, P. S. Portable EDXRF and principal component analysis for inorganic element determination and provenance of eye shadows. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 135-144, 2019.DOI: http://doi.org/10.5433/1679-0375.2019v40n2p135

STANTON, J. M. Galton, Pearson, and the peas: a brief history of linear regression for statistics instructors. Journal of Statistics Education, Raleigh, v. 9, n. 3, p. 1-13, 2001. DOI: https://doi.org/10.1080/10691898.2001.11910537

TAYLOR, H. F. W. Cement chemistry. London: Academic Press, 1990.

UCHIDA, K.; TOMINAGU, H.; IMAMURA, H. Lightelements simultaneous analyzer by alpha and X-ray sources, for cement raw mix control. Radioisotope Instruments Industry Geophysics, Vienna, v. 1, p. 113-26, 1966.

VIEIRA, Y.; LINCK, M. R.; GOBBI, D. L.; MENEZES, L. B.; VILASBÔAS, F. S. Influence of Compression on Soil Characterization by X Ray Fluorescence. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 39, n. 2, p. 125-132, 2018. DOI: http://doi.org/10.5433/1679-0375.2018v39n2p125


WEST, M.; ELLIS, A. T.; POTTS, P. J.; STRELI C.; VANHOOF, C.; WOBRAUSCHEK, P. Atomic spectrometry update: a review of advances in X-ray fluorescence spectrometry and its applications. J. Anal. At. Spectrom, London, v. 31, p. 1706-1755, 2016. DOI: https://doi.org/10.1039/C6JA90034H

Downloads

Published

2020-06-20

How to Cite

Menna Junior, D., Balcão, V. M. C. F., Chaud, M. V., Vila, M. M. D. C., Aranha, N., Yoshida, V. M. H., & Oliveira Junior, J. M. de. (2020). Physicochemical evaluation of Portland cement produced in Brazil via X-ray fluorescence and mechanical strength. Semina: Ciências Exatas E Tecnológicas, 41(1), 3–12. https://doi.org/10.5433/1679-0375.2020v41n1p3

Issue

Section

Original Article

Most read articles by the same author(s)

Loading...