Numerical convergence of a Telegraph Predator-Prey system
DOI:
https://doi.org/10.5433/1679-0375.2022v43n1Espp51Keywords:
Reactive-Diffusive-Telegraph system, Maxwell-Cattaneo delay, discretization consistency, Von Neumann stability, numerical experimentationAbstract
Numerical convergence of a Telegraph Predator-Prey system is studied. This partial differential equation (PDE) system can describe various biological systems with reactive, diffusive, and delay effects. Initially, the PDE system was discretized by the Finite Differences method. Then, a system of equations in a time-explicit form and in a space-implicit form was obtained. The consistency of the Telegraph Predator-Prey system discretization was verified. Von Neumann stability conditions were calculated for a Predator-Prey system with reactive terms and for a Delayed Telegraph system. On the other hand, for our Telegraph Predator-Prey system, it was not possible to obtain the von Neumann conditions analytically. In this context, numerical experiments were carried out and it was verified that the mesh refinement and the model parameters, reactive constants, diffusion coefficients and delay constants, determine the stability/instability conditions of the discretized equations. The results of numerical experiments were presented.
Downloads
References
ABIDEMI, A.; ZAINIDDIN, Z. M.; AZIZ, N. A. B. Impact of control interventions on COVID-19 population dynamics in Malaysia: a mathematical study. The European Physical Journal Plus, Heidelberg, v. 136, n. 2, p. 1-35, 2021. DOI: https://doi.org/10.1140/epjp/s13360-021-01205-5.
ASH, T.; BENTO, A. M.; KAFFINE, D.; RAO, A.; BENTO, A. I. Disease-economy trade-offs under alternative epidemic control strategies. Nature Communications, London, v. 13, p. 3319, 2022. DOI: https://doi.org/10.1038/s41467-022-30642-8.
ATANGANA, A. On the stability and convergence of the time-fractional variable order telegraph equation. Journal of Computational Physics, San Diego, v. 293, p. 104-114, 2015.
AYALA, Y. S. S. Global existence and exponential stability for a coupled wave system. Journal of Mathematical Sciences: Advances and Applications, Allahabad, v. 16, p. 29-46, 2012.
BAZYKIN, A. D. Nonlinear dynamics of interacting populations. Amsterdam: World Scientific Publishing, 1998.
BEARUP, D.; PETROVSKAYA, N. B.; PETROVSKII, S. Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration. Mathematical Biosciences, London, v. 263, p. 143-160, 2015. DOI: https://doi.org/10.1016/j.mbs.2015.02.008.
BOCIU, L.; LASIECKA, I. Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping. Journal of Differential Equations, Amsterdam, v. 249, p. 654-683, 2010. DOI: https://doi.org/10.1016/j.jde.2010.03.009.
BURDEN, R. L.; and FAIRES, J. D. Análise numérica. São Paulo: Cengage Learning, 2008.
CATTANEO, C.R. Sur une forme de l'équation de la chaleur éliminant le paradoxe de l'une propagation instantanée. Comptes Rendus, Grenoble, v. 247, n. 4, p. 431-433, 1958.
CAVALCANTI, M. M.; CAVALCANTI, V. N. D.; FERREIRA, J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Mathematical Methods in the Applied Sciences, Stuttgart, v. 24, p. 1043-1053, 2001.
CAVALCANTI, M. M.; CAVALCANTI, V. N. D.; SORIANO, J. A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electronic Journal of Differential Equations, San Marcos, v. 44, p. 1-14, 2002.
CIRILO, E. R.; BARBA, A. N. D.; NATTI, P. L.; ROMEIRO, N. M. L. A numerical model based on the curvilinear coordinate system for the MAC method simplified. Semina. Ciências Exatas e Tecnológicas, Londrina, v. 39, n. 2, p. 87-98, 2018. DOI: https://doi.org/10.5433/1679-0375.2018v39n2p87.
CIRILO, E. R.; PETROVSKII, S. V.; ROMEIRO, N. M. L.; NATTI, P. L. Investigation into the critical domain problem for the reaction-telegraph equation using advanced numerical algorithms.
International Journal of Applied and Computational Mathematics, New Delhi, v. 5, p. 1-15, 2019.
CIRILO, E. R.; NATTI, P. L.; ROMEIRO, N. M. L.; CANDEZANO, M. A. C.; POLO, J. M. P. One study of COVID-19 spreading at the United States - Brazil - Colombia. Trends in Computational and Applied Mathematics, São Carlos, v. 22, p. 435-452, 2021a.
CIRILO, E. R.; NATTI, P. L.; GODOI, P. H. V.; LERMA, A. A.; MATIAS, V. P.; ROMEIRO, N. M. L. COVID-19 in Londrina-PR: SEIR Model with Parameter Optimization. SEMINA: Ciências Exatas e Tecnológicas, Londrina, v. 42, n. 1Supl, p. 45-54, 2021b. DOI: https://doi.org/10.5433/1679-0375.2021v42n1Suplp45.
CRANK, J.; NICOLSON, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proceedings of the Cambridge Philosophical Society, Cambridge, v. 43, p. 50-67, 1947.
CUMINATO, J. A.; MENEGUETTE, M. Discretização de equações diferenciais parciais: técnicas de diferenças finitas. Rio de Janeiro: SBMAC, 1999.
DE ROOS, A. M.; MC CAULEY, E.; WILSON, W. G. Mobility versus densirty-limited predador-prey dynamics on diferent spacial scales. Proceedings of the Royal Society of London B: Biological Sciences, London, v. 246, n. 1316, p. 117-122, 1991. DOI: https://doi.org/10.1098/rspb.1991.0132.
EL-AZAB, M.S.; EL-GAMEL, M. A numerical algorithm for the solution of telegraph equations. Applied Mathematics and Computation, New York, v. 190, p. 757-764, 2007. DOI: https://doi.org/10.1016/j.amc.2007.01.091.
FERREIRA, V. G.; CUMINATO, J. A.; TOMÉ, M. F.; FORTUNA, A. O.; MANGIAVACCHI, N.; CASTELO, A.; NONATO, L. G. Análise e implementação de modelos de turbulência K-epsilon para simulação de escoamentos imcompreessíveis envolvendo superfícies livres e rígidas. Trends in Computational and Applied Mathematics, São Carlos, v. 2, p. 81-90, 2001. DOI: https://doi.org/10.5540/tema.2001.02.01.0081.
FORTUNA, A. O. Técnicas computacionais para dinâmica dos fluidos. São Paulo: EDUSP, 2012.
GREENHALGH, D.; KHAN, Q. J. A.; PETTI, J. S. An eco-epidemiological predator-prey model where predators distinguish between susceptible and infected prey. Mathematical Methods in the Applied Sciences, London, v. 40, n. 1, p. 146-166, 2017. DOI: https://doi.org/10.1002/mma.3974.
GRIEBEL, M.; DORNSEIFER, T.; NEUNHOEFFER, T. Numerical simulation in fluid dynamics: a practical introduction. Philadelphia: Society for Industrial and Applied Mathematics, 1998.
HIRSCH, C. Numerical computation of internal and external flows. Oxford: John Wiley & Sons, 2007.
HOLLING, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. The Canadian Entomologist, Cambridge, v. 91, n. 5, p. 293-320, 1959a. DOI: https://doi.org/10.4039/ent91293-5.
HOLLING, C. S. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, Cambridge, v. 91, n. 7, p. 385-398, 1959b. DOI: https://doi.org/10.4039/Ent91385-7.
HUFFAKER, C. B. Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia, Berkeley, v. 27, n. 14, p. 343-383, 1958. DOI: https://doi.org/10.3733/hilg.v27n14p343.
ISAACSON, E.; KELLER, H. B. Analysis of numerical methods. New York, Dover Publications, 1994.
KISHORE, N.; KAHN, R.; MARTINEZ, P. P.; DE SALAZAR, P. M.; MAHMUD, A. S.; BUCKEE, C. O. Lockdowns result in changes in human mobility which may impact the epidemiologic dynamics of SARS-CoV-2. Scientific Reports, London, v. 11, p. 6995, 2021. DOI: https://doi.org/10.1038/s41598-021-86297-w.
LAX, P. D.; RICHTMYER, R. D. Survey of the stability of linear finite difference equations. Communications on Pure and Applied Mathematics, New York, v. 9, p. 267-293, 1956. DOI: https://doi.org/10.1002/cpa.3160090206.
LEWIS, M.A.; PETROVSKII, S. V.; POTTS, J. R. The mathematics behind biological invasions, Switzerland: Springer International Publishing, 2016. (Interdisciplinary Applied Mathematics, v. 44).
LI, H.; LI, Y.; YANG, W. Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion. Nonlinear Analysis: Real World Applications, Oxford, v. 27, p. 261-282, 2016. DOI: https://doi.org/10.1016/j.nonrwa.2015.07.010.
LI, S.; YUAN, S.; WANG, H. Disease transmission dynamics of an epidemiological predator-prey system in open advective environments. Discrete and Continuous Dynamical Systems - B, Springfield, v. 28, p. 1480-1502, 2023. DOI: https://doi.org/10.3934/dcdsb.2022131.
LOTKA, A. J. Elements of physical biology. Baltimore: World Scientific, 1925.
MENDEZ, V.; FEDOTOV, S.; HORSTHEMKE, W. Reaction-transport systems: mesoscopic foundations, fronts and spatial instabilities. Berlin: Springer-Verlag, 2010.
MICKENS, R. E.; JORDAN, P. M. A Positivity-preserving nonstandard finite difference scheme for the damped wave equation. Numerical Methods for Partial Differential Equations, Grenoble, v. 20, p. 639-649, 2003.
MUSTAFA, M. I. Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Analysis Real World Application, London, v. 13, p. 452-463, 2012. DOI: https://doi.org/10.1016/j.nonrwa.2011.08.002.
NATTI, P. L.; ROMEIRO, N. M. L.; CIRILO, E. R.; NATTI, E. R. T.; OLIVEIRA, C. F.; SOBRINHO, A. S. O.; KITA, C. M. Modelagem matemática e estabilidade de sistemas predador-presa. In: GOMES, I. A. (org.). A produção do conhecimento nas ciências exatas e da terra 2. Ponta Grossa: Atena Editora, 2019. v. 2, p. 162-177. DOI: https://doi.org/10.22533/at.ed.39519040416.
OLIVEIRA, C. F; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; NATTI, E. R. T. Numerical stability of solitons waves through splices in quadratic optical media. Acta Scientiarum. Technology, Maringá, v. 42, p. e46881, 2019. DOI: https://doi.org/10.4025/actascitechnol.v42i1.46881.
PAUL, A.; LAURILA, T.; VUORINEN, V.; DIVINSKI, S. V. Thermodynamics, diffusion and the kirkendall effect in solids. London: Springer, 2014.
PAUL, A.; REJA, S.; KUNDU, S.; BHATTACHARYA, S. COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution. Chaos, Solitons and Fractals, Oxford, v. 144, p. 110697, 2021. DOI: https://doi.org/10.1016/j.chaos.2021.110697.
ROMEIRO, N. M. L.; BELINELLI, E. O.; Maganin, J.; NATTI, P.L.; CIRILO, E. R. Numerical study of different methods applied to the one-dimensional transient heat equation. REMAT: Revista Eletrônica da Matemática, Caxias do Sul, v. 7, p. e3012, 2021.DOI: https://doi.org/10.35819/remat2021v7i1id4767.
SAITA, T. M.; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; CANDEZANO, M. A. C.; ACUNA, R. A. B.; MORENO, L. C. G. Proposals for Sewage Management at Luruaco Lake, Colombia. Environmental Engineering Science, Larchmont, v. 38, n. 12, p. 1140-1148, 2021. DOI: https://doi.org/10.1089/ees.2020.0401.
SANGAY, J. C. A. Aplicação do método de complementaridade mista para problemas parabólicos não lineares. 2015. Dissertação (Mestrado) - Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, 2015.
SHAOYONG, L. The asymptotic theory of semilinear perturbed telegraph equation and its application. Applied Mathematics and Mechanics, Shanghai, v. 18, p. 657-662, 1997. DOI: https://doi.org/10.1007/BF00127013.
STRIKWERDA, J. C. Finite difference schemes and partial differential equations. Philadelphia: SIAM, 2004.
TANSKY, M. Switching effect in prey-predator system. Journal of Theoretical Biology, Amsterdam, v. 70, n. 3, p. 263-271, 1978. DOI: https://doi.org/10.1016/0022-5193(78)90376-4.
TILLES, P. F. C.; PETROVSKII, S. V.; NATTI, P. L. A random walk description of individual animal movement accounting for periods of rest. Royal Society Open Science, London, v. 3, p. 160566, 2016. DOI: https://doi.org/10.1098/rsos.160566.
TILLES, P. F. C.; PETROVSKII, S. V.; NATTI, P. L. A random acceleration model of individual animal movement allowing for diffusive, superdiffusive and superballistic regimes. Scientific Reports, London, v. 7, p. 14364, 2017. DOI: https://doi.org/10.1038/s41598-017-14511-9.
VOLTERRA, V. Fluctuations in the abundance of a species considered mathematically. Nature, London, v. 118, p. 558-560, 1926. DOI: https://doi.org/10.1038/118558a0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Exatas e Tecnológicas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author's right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.