Numerical convergence of a Telegraph Predator-Prey system
DOI:
https://doi.org/10.5433/1679-0375.2022v43n1Espp51Keywords:
Reactive-Diffusive-Telegraph system, Maxwell-Cattaneo delay, discretization consistency, Von Neumann stability, numerical experimentationAbstract
Numerical convergence of a Telegraph Predator-Prey system is studied. This partial differential equation (PDE) system can describe various biological systems with reactive, diffusive, and delay effects. Initially, the PDE system was discretized by the Finite Differences method. Then, a system of equations in a time-explicit form and in a space-implicit form was obtained. The consistency of the Telegraph Predator-Prey system discretization was verified. Von Neumann stability conditions were calculated for a Predator-Prey system with reactive terms and for a Delayed Telegraph system. On the other hand, for our Telegraph Predator-Prey system, it was not possible to obtain the von Neumann conditions analytically. In this context, numerical experiments were carried out and it was verified that the mesh refinement and the model parameters, reactive constants, diffusion coefficients and delay constants, determine the stability/instability conditions of the discretized equations. The results of numerical experiments were presented.
Downloads
References
ABIDEMI, A.; ZAINIDDIN, Z. M.; AZIZ, N. A. B. Impact of control interventions on COVID-19 population dynamics in Malaysia: a mathematical study. The European Physical Journal Plus, Heidelberg, v. 136, n. 2, p. 1-35, 2021. DOI: https://doi.org/10.1140/epjp/s13360-021-01205-5. DOI: https://doi.org/10.1140/epjp/s13360-021-01205-5
ASH, T.; BENTO, A. M.; KAFFINE, D.; RAO, A.; BENTO, A. I. Disease-economy trade-offs under alternative epidemic control strategies. Nature Communications, London, v. 13, p. 3319, 2022. DOI: https://doi.org/10.1038/s41467-022-30642-8. DOI: https://doi.org/10.1038/s41467-022-30642-8
ATANGANA, A. On the stability and convergence of the time-fractional variable order telegraph equation. Journal of Computational Physics, San Diego, v. 293, p. 104-114, 2015. DOI: https://doi.org/10.1016/j.jcp.2014.12.043
AYALA, Y. S. S. Global existence and exponential stability for a coupled wave system. Journal of Mathematical Sciences: Advances and Applications, Allahabad, v. 16, p. 29-46, 2012.
BAZYKIN, A. D. Nonlinear dynamics of interacting populations. Amsterdam: World Scientific Publishing, 1998. DOI: https://doi.org/10.1142/2284
BEARUP, D.; PETROVSKAYA, N. B.; PETROVSKII, S. Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration. Mathematical Biosciences, London, v. 263, p. 143–160, 2015. DOI: https://doi.org/10.1016/j.mbs.2015.02.008. DOI: https://doi.org/10.1016/j.mbs.2015.02.008
BOCIU, L.; LASIECKA, I. Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping. Journal of Differential Equations, Amsterdam, v. 249, p. 654-683, 2010. DOI: https://doi.org/10.1016/j.jde.2010.03.009. DOI: https://doi.org/10.1016/j.jde.2010.03.009
BURDEN, R. L.; and FAIRES, J. D. Análise numérica. São Paulo: Cengage Learning, 2008.
CATTANEO, C.R. Sur une forme de l’équation de la chaleur éliminant le paradoxe de l’une propagation instantanée. Comptes Rendus, Grenoble, v. 247, n. 4, p. 431–433, 1958.
CAVALCANTI, M. M.; CAVALCANTI, V. N. D.; FERREIRA, J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Mathematical Methods in the Applied Sciences, Stuttgart, v. 24, p. 1043-1053, 2001. DOI: https://doi.org/10.1002/mma.250
CAVALCANTI, M. M.; CAVALCANTI, V. N. D.; SORIANO, J. A. Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electronic Journal of Differential Equations, San Marcos, v. 44, p. 1-14, 2002. DOI: https://doi.org/10.57262/die/1356123377
CIRILO, E. R.; BARBA, A. N. D.; NATTI, P. L.; ROMEIRO, N. M. L. A numerical model based on the curvilinear coordinate system for the MAC method simplified. Semina. Ciências Exatas e Tecnológicas, Londrina, v. 39, n. 2, p. 87-98, 2018. DOI: https://doi.org/10.5433/1679-0375.2018v39n2p87. DOI: https://doi.org/10.5433/1679-0375.2018v39n2p87
CIRILO, E. R.; PETROVSKII, S. V.; ROMEIRO, N. M. L.; NATTI, P. L. Investigation into the critical domain problem for the reaction-telegraph equation using advanced numerical algorithms.
International Journal of Applied and Computational Mathematics, New Delhi, v. 5, p. 1-15, 2019.
CIRILO, E. R.; NATTI, P. L.; ROMEIRO, N. M. L.; CANDEZANO, M. A. C.; POLO, J. M. P. One study of COVID-19 spreading at the United States - Brazil - Colombia. Trends in Computational and Applied Mathematics, São Carlos, v. 22, p. 435-452, 2021a. DOI: https://doi.org/10.5540/tcam.2021.022.03.00435
CIRILO, E. R.; NATTI, P. L.; GODOI, P. H. V.; LERMA, A. A.; MATIAS, V. P.; ROMEIRO, N. M. L. COVID-19 in Londrina-PR: SEIR Model with Parameter Optimization. SEMINA: Ciências Exatas e Tecnológicas, Londrina, v. 42, n. 1Supl, p. 45-54, 2021b. DOI: https://doi.org/10.5433/1679-0375.2021v42n1Suplp45. DOI: https://doi.org/10.5433/1679-0375.2021v42n1Suplp45
CRANK, J.; NICOLSON, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proceedings of the Cambridge Philosophical Society, Cambridge, v. 43, p. 50-67, 1947. DOI: https://doi.org/10.1017/S0305004100023197
CUMINATO, J. A.; MENEGUETTE, M. Discretização de equações diferenciais parciais: técnicas de diferenças finitas. Rio de Janeiro: SBMAC, 1999.
DE ROOS, A. M.; MC CAULEY, E.; WILSON, W. G. Mobility versus densirty-limited predador-prey dynamics on diferent spacial scales. Proceedings of the Royal Society of London B: Biological Sciences, London, v. 246, n. 1316, p. 117–122, 1991. DOI: https://doi.org/10.1098/rspb.1991.0132. DOI: https://doi.org/10.1098/rspb.1991.0132
EL-AZAB, M.S.; EL-GAMEL, M. A numerical algorithm for the solution of telegraph equations. Applied Mathematics and Computation, New York, v. 190, p. 757-764, 2007. DOI: https://doi.org/10.1016/j.amc.2007.01.091. DOI: https://doi.org/10.1016/j.amc.2007.01.091
FERREIRA, V. G.; CUMINATO, J. A.; TOMÉ, M. F.; FORTUNA, A. O.; MANGIAVACCHI, N.; CASTELO, A.; NONATO, L. G. Análise e implementação de modelos de turbulência K-epsilon para simulação de escoamentos imcompreessíveis envolvendo superfícies livres e rígidas. Trends in Computational and Applied Mathematics, São Carlos, v. 2, p. 81-90, 2001. DOI: https://doi.org/10.5540/tema.2001.02.01.0081. DOI: https://doi.org/10.5540/tema.2001.02.01.0081
FORTUNA, A. O. Técnicas computacionais para dinâmica dos fluidos. São Paulo: EDUSP, 2012.
GREENHALGH, D.; KHAN, Q. J. A.; PETTI, J. S. An eco-epidemiological predator–prey model where predators distinguish between susceptible and infected prey. Mathematical Methods in the Applied Sciences, London, v. 40, n. 1, p. 146–166, 2017. DOI: https://doi.org/10.1002/mma.3974. DOI: https://doi.org/10.1002/mma.3974
GRIEBEL, M.; DORNSEIFER, T.; NEUNHOEFFER, T. Numerical simulation in fluid dynamics: a practical introduction. Philadelphia: Society for Industrial and Applied Mathematics, 1998. DOI: https://doi.org/10.1137/1.9780898719703
HIRSCH, C. Numerical computation of internal and external flows. Oxford: John Wiley & Sons, 2007.
HOLLING, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. The Canadian Entomologist, Cambridge, v. 91, n. 5, p. 293–320, 1959a. DOI: https://doi.org/10.4039/ent91293-5. DOI: https://doi.org/10.4039/Ent91293-5
HOLLING, C. S. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, Cambridge, v. 91, n. 7, p. 385–398, 1959b. DOI: https://doi.org/10.4039/Ent91385-7. DOI: https://doi.org/10.4039/Ent91385-7
HUFFAKER, C. B. Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia, Berkeley, v. 27, n. 14, p. 343–383, 1958. DOI: https://doi.org/10.3733/hilg.v27n14p343. DOI: https://doi.org/10.3733/hilg.v27n14p343
ISAACSON, E.; KELLER, H. B. Analysis of numerical methods. New York, Dover Publications, 1994.
KISHORE, N.; KAHN, R.; MARTINEZ, P. P.; DE SALAZAR, P. M.; MAHMUD, A. S.; BUCKEE, C. O. Lockdowns result in changes in human mobility which may impact the epidemiologic dynamics of SARS-CoV-2. Scientific Reports, London, v. 11, p. 6995, 2021. DOI: https://doi.org/10.1038/s41598-021-86297-w. DOI: https://doi.org/10.1038/s41598-021-86297-w
LAX, P. D.; RICHTMYER, R. D. Survey of the stability of linear finite difference equations. Communications on Pure and Applied Mathematics, New York, v. 9, p. 267-293, 1956. DOI: https://doi.org/10.1002/cpa.3160090206. DOI: https://doi.org/10.1002/cpa.3160090206
LEWIS, M.A.; PETROVSKII, S. V.; POTTS, J. R. The mathematics behind biological invasions, Switzerland: Springer International Publishing, 2016. (Interdisciplinary Applied Mathematics, v. 44). DOI: https://doi.org/10.1007/978-3-319-32043-4
LI, H.; LI, Y.; YANG, W. Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion. Nonlinear Analysis: Real World Applications, Oxford, v. 27, p. 261–282, 2016. DOI: https://doi.org/10.1016/j.nonrwa.2015.07.010. DOI: https://doi.org/10.1016/j.nonrwa.2015.07.010
LI, S.; YUAN, S.; WANG, H. Disease transmission dynamics of an epidemiological predator-prey system in open advective environments. Discrete and Continuous Dynamical Systems - B, Springfield, v. 28, p. 1480-1502, 2023. DOI: https://doi.org/10.3934/dcdsb.2022131. DOI: https://doi.org/10.3934/dcdsb.2022131
LOTKA, A. J. Elements of physical biology. Baltimore: World Scientific, 1925.
MENDEZ, V.; FEDOTOV, S.; HORSTHEMKE, W. Reaction-transport systems: mesoscopic foundations, fronts and spatial instabilities. Berlin: Springer-Verlag, 2010. DOI: https://doi.org/10.1007/978-3-642-11443-4
MICKENS, R. E.; JORDAN, P. M. A Positivity-preserving nonstandard finite difference scheme for the damped wave equation. Numerical Methods for Partial Differential Equations, Grenoble, v. 20, p. 639-649, 2003. DOI: https://doi.org/10.1002/num.20003
MUSTAFA, M. I. Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Analysis Real World Application, London, v. 13, p. 452-463, 2012. DOI: https://doi.org/10.1016/j.nonrwa.2011.08.002. DOI: https://doi.org/10.1016/j.nonrwa.2011.08.002
NATTI, P. L.; ROMEIRO, N. M. L.; CIRILO, E. R.; NATTI, E. R. T.; OLIVEIRA, C. F.; SOBRINHO, A. S. O.; KITA, C. M. Modelagem matemática e estabilidade de sistemas predador-presa. In: GOMES, I. A. (org.). A produção do conhecimento nas ciências exatas e da terra 2. Ponta Grossa: Atena Editora, 2019. v. 2, p. 162-177. DOI: https://doi.org/10.22533/at.ed.39519040416. DOI: https://doi.org/10.22533/at.ed.39519040416
OLIVEIRA, C. F; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; NATTI, E. R. T. Numerical stability of solitons waves through splices in quadratic optical media. Acta Scientiarum. Technology, Maringá, v. 42, p. e46881, 2019. DOI: https://doi.org/10.4025/actascitechnol.v42i1.46881. DOI: https://doi.org/10.4025/actascitechnol.v42i1.46881
PAUL, A.; LAURILA, T.; VUORINEN, V.; DIVINSKI, S. V. Thermodynamics, diffusion and the kirkendall effect in solids. London: Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-07461-0
PAUL, A.; REJA, S.; KUNDU, S.; BHATTACHARYA, S. COVID-19 pandemic models revisited with a new proposal: Plenty of epidemiological models outcast the simple population dynamics solution. Chaos, Solitons and Fractals, Oxford, v. 144, p. 110697, 2021. DOI: https://doi.org/10.1016/j.chaos.2021.110697. DOI: https://doi.org/10.1016/j.chaos.2021.110697
ROMEIRO, N. M. L.; BELINELLI, E. O.; Maganin, J.; NATTI, P.L.; CIRILO, E. R. Numerical study of different methods applied to the one-dimensional transient heat equation. REMAT: Revista Eletrônica da Matemática, Caxias do Sul, v. 7, p. e3012, 2021.DOI: https://doi.org/10.35819/remat2021v7i1id4767. DOI: https://doi.org/10.35819/remat2021v7i1id4767
SAITA, T. M.; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; CANDEZANO, M. A. C.; ACUNA, R. A. B.; MORENO, L. C. G. Proposals for Sewage Management at Luruaco Lake, Colombia. Environmental Engineering Science, Larchmont, v. 38, n. 12, p. 1140-1148, 2021. DOI: https://doi.org/10.1089/ees.2020.0401. DOI: https://doi.org/10.1089/ees.2020.0401
SANGAY, J. C. A. Aplicação do método de complementaridade mista para problemas parabólicos não lineares. 2015. Dissertação (Mestrado) - Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, 2015.
SHAOYONG, L. The asymptotic theory of semilinear perturbed telegraph equation and its application. Applied Mathematics and Mechanics, Shanghai, v. 18, p. 657-662, 1997. DOI: https://doi.org/10.1007/BF00127013. DOI: https://doi.org/10.1007/BF00127013
STRIKWERDA, J. C. Finite difference schemes and partial differential equations. Philadelphia: SIAM, 2004. DOI: https://doi.org/10.1137/1.9780898717938
TANSKY, M. Switching effect in prey-predator system. Journal of Theoretical Biology, Amsterdam, v. 70, n. 3, p. 263-271, 1978. DOI: https://doi.org/10.1016/0022-5193(78)90376-4. DOI: https://doi.org/10.1016/0022-5193(78)90376-4
TILLES, P. F. C.; PETROVSKII, S. V.; NATTI, P. L. A random walk description of individual animal movement accounting for periods of rest. Royal Society Open Science, London, v. 3, p. 160566, 2016. DOI: https://doi.org/10.1098/rsos.160566. DOI: https://doi.org/10.1098/rsos.160566
TILLES, P. F. C.; PETROVSKII, S. V.; NATTI, P. L. A random acceleration model of individual animal movement allowing for diffusive, superdiffusive and superballistic regimes. Scientific Reports, London, v. 7, p. 14364, 2017. DOI: https://doi.org/10.1038/s41598-017-14511-9. DOI: https://doi.org/10.1038/s41598-017-14511-9
VOLTERRA, V. Fluctuations in the abundance of a species considered mathematically. Nature, London, v. 118, p. 558–560, 1926. DOI: https://doi.org/10.1038/118558a0. DOI: https://doi.org/10.1038/118558a0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Exatas e Tecnológicas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Copyright Declaration for articles published in this journal is the author’s right. Since manuscripts are published in an open access Journal, they are free to use, with their own attributions, in educational and non-commercial applications. The Journal has the right to make, in the original document, changes regarding linguistic norms, orthography, and grammar, with the purpose of ensuring the standard norms of the language and the credibility of the Journal. It will, however, respect the writing style of the authors. When necessary, conceptual changes, corrections, or suggestions will be forwarded to the authors. In such cases, the manuscript shall be subjected to a new evaluation after revision. Responsibility for the opinions expressed in the manuscripts lies entirely with the authors.
This journal is licensed with a license Creative Commons Attribution-NonCommercial 4.0 International.