Soliton propagation in lossy optical fibers

Soliton propagation in lossy optical fibers




Optical Communication, Soliton, Finite Differences, Dissipation, Nonlinear Amplification,


In this work we study the propagation of solitons in lossy optical fibers. The main objective of this work is to study the loss of energy of the soliton wave during propagation and then to evaluate the impact of this loss on the transmission of the soliton signal. In this context, a numerical scheme was developed to solve a system of complex partial differential equations (CPDE) that describes the propagation of solitons in optical fibers with loss and nonlinear amplification mechanisms. The numerical procedure is based on the mathematical theory of Taylor series of complex functions. We adapted the Finite Difference Method (FDM) to approximate derivatives of complex functions. Then, we solve the algebraic system resulting from the discretization, implicitly, through the relaxation Gauss-Seidel method (RGSM). The numerical study of CPDE system with linear and cubic attenuation showed that soliton waves undergo attenuation, dispersion, and oscillation effects. On the other hand, we find that by considering the nonlinear term (cubic term) as an optical amplification, it is possible to partially compensate the attenuation of the optical signal. Finally, we show that a gain of 9% triples the propagation distance of the fundamental soliton wave, when the dissipation rate is 1%


Metrics Loading ...

Author Biographies

Caroline Dall'Agnol, Universidade Tecnológica Federal do Paraná -UTFPR, Câmpus Dois Vizinhos

Master in Profa. of the Universidade Federal Tecnológica do Paraná- UTFPR, Campus Dois Vizinhos, Pr, Brazil

Paulo Laerte Natti, Universidade Estadual de Londrina

PhD in Physics from the University of São Paulo (IFUSP) and postdoctoral from the Institute of Theoretical Physics - São Paulo (IFT-UNESP). Associate Professor, Department of Mathematics, Universidade Estadual de Londrina (UEL).

Eliandro Rodrigues Cirilo, Universidade Estadual de Londrina

PhD in Computer Science and Computational Mathematics from the University of São Paulo. Professor at the Universidade Estadual de Londrina.

Neyva Maria Lopes Romeiro, Universidade Estadual de Londrina

PhD in Civil Engineering from the Federal University of Rio de Janeiro UFRJ / COPPE. Professor at Universidade Estadual de Londrina.

Érica Regina TakanoNatti, PUC, Câmpus Londrina

PhD in Mathematical Physics, Institute of Physics, University of São Paulo. Professor at thePontifícia Universidade Católica do Paraná - Londrina Campus.


AGRAWAL, G. P. {\it Nonlinear Fiber Optics}. 6th ed., San Diego: Academic Press, 2019.


ARTIGAS, D.; TORNER, L.; AKLMEDIEV, N. N. Dynamics of quadratic soliton excitation. {\it Optics Communications Journal}, v. 162, p. 347-356, 1999.

ASHRAF, R.; AHMAD, M. O.; YOUNIS, M.; ALI, K.; RIZVI, S. T. R. Dipole and Gausson soliton for ultrashort laser pulse with high order dispersion. {\it Superlattices and Microstructures}, v. 109, p.504-510, 2017.

CHEMNITZ, M.; GEGHARDT, M.; GAIDA, C.; STUTZKI, F.; KOBELKE, J.; LIMBERT, J.; TUNNERMANN, A.; SCHMIDT, M. A. Hybrid soliton dynamics in liquid-core fibers. {\it Nature Communications}, v. 8, p. 42-52, 2017.

CIRILO, E. R.; NATTI, P. L.; ROMEIRO, N. M. L.; NATTI, E. R. T. Determination of the optimal relaxation parameter in a numerical procedure of solitons propagation. {\it Revista Ciências Exatas e Naturais}, v. 10, p. 77-94, 2008.

CIRILO, E. R.; NATTI, P. L.; ROMEIRO, N. M. L.; NATTI, E. R. T.; OLIVEIRA, C. F. Soliton in ideal optical fibers – a numerical development. {\it Semina: Exact and Technological Sciences}, v. 31, p. 57-68, 2010.

EFTEKHAR, M. A.; EZNAVEH, Z. S.; AVILES, H. E. L.; BENIS, S.; LOPEZ, J. E. A.; KOLESIK, M.; WISE, F.; CORREA, R. A.; CHRISTODOULIDES, D. N. Accelerated nonlinear interactions in graded-index multimode fibers. {\it Nature Communications}, v.10, p. 1638-1647, 2019.

FUKUI, K.; KASAMATSU, T.; MORIE, M.; OHHIRA, R.; ITO, T.; SEKIYA, K.; OGASAHARA, D.; ONO, T. 10.92-Tb/s (273 x 40-Gb/s) triple-band ultra-dense WDM optical-repeatered transmission experiment," in {\it Optical Fiber Communication Conference and International Conference on Quantum Information}, OSA Technical Digest Series, paper PD24, 2001. In:

GALLÉAS, W.; YMAI, L. H.; NATTI, P. L.; NATTI, E. R. T. Solitons wave in dieletric optical fibers (in Portuguese), {\it Revista Brasileira de Ensino de Física}, v. 25, p. 294-304, 2003.

KOHL R.; BISWAS, A.; MILOVIC, D.; ZERRAD, E. Optical soliton perturbation in a non-Kerr law media. {\it Optics \& Laser Technology}, v. 40, p. 647-662, 2008.

KUMAR, D. R.; RAO, B. P. Soliton interaction in birefringent optical fibers: Effects of nonlinear gain devices. {\it Optik}, v. 123, p. 117-124, 2012.

LATAS, S. C. V.; FERREIRA, M. F. S. Stable soliton propagation with self-frequency shift. {\it Mathematics and Computers in Simulation}, v. 74, p. 379-387, 2007.

LUO, J.; SUN, B.; JI, J.; TAN, E. L.; ZHANG, Y.; YU, X. High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2 $\mu$m. {\it Optics Letters}, v. 42, p. 1568-1571, 2017.

MENYUK, C. R.; SCHIEK, R.; TORNER L. Solitary waves due to $\chi^{(2)}$:$\chi^{(2)}$ cascading. {\it Journal of Optics of the Society American B – Optical Physics}, v. 11, p. 2434-2443, 1994.

OLIVEIRA, C. F.; NATTI, P. L.; CIRILO, E. R.; ROMEIRO, N. M. L.; NATTI, E. R. T. Numerical stability of solitons waves through splices in quadratic optical media. {\it Acta Scientiarum. Technology}, to appear in 2020.

PALMIERI, L.; SCHENATO, L. Distributed optical fiber sensing based on Rayleigh scattering. {\it The Open Optics Journal}, v. 7, p. 104-127, 2013.

QUEIROZ, D. A.; NATTI, P. L.; ROMEIRO, N. M. L.; NATTI, E. R. T. A numerical development of the dynamical equations of solitons in optical fibers (in Portuguese). {\it Semina: Exact and Technological Sciences}, v. 27, p. 121-128, 2006.

SMITH, N. J.; KNOX, F.M.; DORAN, N. J.; BLOW, K. J.; BENNION, I. Enhanced power solitons in optical fibres with periodic dispersion management. {\it Electronics Letters}, v. 32, p. 54-55, 1996.

TAYLOR, J. R. {\it Optical Solitons Theory and Experiment}. Cambridge: Cambridge University Press, 1992.

TRIKI, H.; BISWAS, A.; MILOVIC, D.; BELIC, M. Chirped femtosecond pulses in the higher-order nonlinear Schrodinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities. {\it Optics Communications}, v. 366, p. 362-369, 2016.

WANG, W. C.; ZHOU, B.; XU, S. H.; YANG, Z. M.; ZHANG, Q. Y. Recent advances in soft optical glass fiber lasers. {\it Progress in Material Sciences}, v. 101, p. 90-171, 2019.

WEN, B.; YANGBAO, D.; SHI, X.; FU, X. (2018). Evolution of finite-energy Airy pulse interaction with high-power soliton pulse in optical fiber with higher-order effects. {\it Optik}, v. 152, p. 61-68, 2018.

YAMAI, L. H.; GALLÉAS, W.; NATTI, P. L.; NATTI, E. R. T. Stability of solitons in $\chi^{2}$-type dielectric optical fibers (in Portuguese). {\it Revista Ciências Exatas e Naturais}, v. 6, p. 9-29, 2004.

YUSHKO, O. V.; REDYUK, A. A.; FEDORUK, M. P.; TURITSYN, S. K. Coherent soliton communication lines. {\it Journal of Experimental and Theoretical Physics}, v. 119, p. 787-794, 2014.

ZAJNULINA, M.; BOHN, M.; BODENMULLER, D.; BLOW, K.; BOGGIO, J. M. C.; RIEZNIK, A. A.; ROTH, M. M. Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation. {\it Optics Communications}, v. 393, p. 95-102, 2017.




How to Cite

Dall’Agnol, C., Natti, P. L., Cirilo, E. R., Romeiro, N. M. L., & TakanoNatti, Érica R. (2019). Soliton propagation in lossy optical fibers. Semina: Ciências Exatas E Tecnológicas, 40(2), 97–106.



Original Article

Most read articles by the same author(s)

1 2 > >>