Waxy maize, corn and cassava starch: Thermal degradation kinetics

Waxy maize, corn and cassava starch: Thermal degradation kinetics


  • Aline Merci Universidade Estadual de Londrina
  • Suzana Mali Universidade Estadual de Londrina
  • Gizilene Maria de Carvalho Universidade Estadual de Londrina http://orcid.org/0000-0001-9514-7897




amylose content, intrinsic viscosity, activation energy, starches


The use of starches in food and materials areas requires processing at elevated temperatures. The study of thermal degradation kinetics of starches and their relationship with amylose content, crystallinity, viscosity and thermal properties can help to design the processing conditions. The crystallinity and ordering of corn, cassava and waxy maize starches determined by means of X-ray diffraction (XRD) and Fourier Transform infrared spectroscopy (FTIR), respectively. Correlation between crystallinity, viscosity and amylose content was found. The kinetic parameters (activation energy (Ea), order and pre-exponential factor (A)) were determined through three models: Coats-Redfern, Broido and van Klevelen, using the best linear fit method. The overall order of thermal degradation process of all the starches was found to be of first order. The Ea increases following the order: corn < cassava < waxy maize. The higher A and Ea values found for waxy maize starch indicate that structural differences influence the thermal degradation process.


Metrics Loading ...

Author Biographies

Aline Merci, Universidade Estadual de Londrina

Dpto. Chemistry, UEL, Londrina, Pr, Brazil

Suzana Mali, Universidade Estadual de Londrina

Dra. Profa., Dept. Biochemistry and Biotechnology, UEL, Londrina, Pr, Brazil.

Gizilene Maria de Carvalho, Universidade Estadual de Londrina

Dra. Profa., Dept. Chemistry, UEL, Londrina, Pr, Brazil.


AGGARWAL, P.; DOLLIMORE, D. A thermal analysis investigation of partially hydrolyzed starch. Thermochimica Acta, v. 319, n. 1–2, p. 17–25, 1998. Available from internet: <http://www.sciencedirect.com/science/article/pii/S0040603198003554>.
BROIDO, A. A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science Part A-2: Polymer Physics, v. 7, n. 10, p. 1761–1773, 1969. Available from internet: <http://doi.wiley.com/10.1002/pol.1969.160071012>.
CHEN, P.; YU, L.; CHEN, L.; LI, X. Morphology and Microstructure of Maize Starches with Different Amylose / Amylopectin Content. Starch/Stärke, v. 58, p. 611–615, 2006.
COATS, A. W.; REDFERN, J. P. Kinetic parameters from thermogravimetric data. Nature, n. 201, p. 68–69, 1964.
GUINESI, L. S.; DA RÓZ, A. L.; CORRADINI, E.; MATTOSO, L. H. C.; TEIXEIRA, E. M.; CURVELO, A. A. S. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochimica Acta, Amsterdam,v. 447, p. 190 – 196, 2006.
HATAKEYAMA, T; QUINN, F.X. Thermal Analysis - Fundamentals and Applications to Polymer Science. 2. ed. [s.l: s.n.] HOUSE, J. E. Principles of Chemical Kinetics. 2. ed. [s.l.] Academic Press is an imprint of Elsevier, 2007.
HOOVER, R.; RATNAYAKE, W. S. Determination of total amylose content. Current Protocols in Food Analytical Chemistry. [s.l: s.n.]p. E2.3.1-E2.3.5, 2001.
JANKOVIC, B. Thermal characterization and detailed ´ kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydrate Polymers, v. 95, p. 621–629, 2013.
KIZIL, R.; IRUDAYARAJ, J.; SEETHARAMAN, K. Characterization of Irradiated Starches by Using FTRaman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, v. 50, p. 3912–3918, 2002.
LIU, X.; WANG, Y.; YU, L.; TONG, Z.; CHEN, L.; LIU, H.; LI, X. Thermal degradation and stability of starch under different processing conditions. Starch/Stärke, v. 65, n. 1–2, p. 48–60, 2013.
LIU, X.; YU, L.; XIE, F.; LI, M.; CHEN, L.; LI, X. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch/Stärke, v. 62, n. 3–4, p. 139–146, 2010.
LIU, Y.; YANG, L.; MA, C.; ZHANG, Y. Thermal behavior of sweet potato starch by non-isothermal thermogravimetric analysis. Materials, Basel, v.12, n.5, p.699, 2019.
LOPEZ-RUBIO, A.; FLANAGAN, B. M.; GILBERT, E. P.; GIDLEY, M. J. A Novel Approach for Calculating Starch Crystallinity and Its Correlation. Biopolymers, v. 89, n. 9, p. 761–768, 2008.
MERCI, A.; MARIM, R. G.; URBANO, A.; MALI, S. Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packaging and Shelf Life, [s.l.], v. 20, p. 100321, apr. 2019.
METZGER, H. M. H. G. A New Analysis of Thermogravimetric Traces. Analytical chemistry, v. 35, n. 10, p. 1464–1468, 1963.
PINEDA-GÓMEZ, P. ; ANGEL-GIL, N. C ; VALENCIAMUÑOZ, C. ; ROSALES-RIVERA, A. ; RODRÍGUEZGARCÍA, M.E. Thermal degradation of starch sources: Green banana, potato, cassava, and corn – kinetic study by non-isothermal procedures. Starch/Stärke, v.66, n.7/8, p.691-699, 2014.
REIS, M. O.; OLIVATO, J. B.; BILCK, A. P.; ZANELA, J.; GROSSMANN, M. V. E.; YAMASHITA, F. Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Industrial Crops and Products, v. 112, n. January, p. 481–487, 2018. Available from internet: <https://doi.org/10.1016/j.indcrop.2017.12.045.>
MERCI, A.; MALI, S.; DE CARVALHO, G.M. SMITS, A. L. M.; RUHNAU, F. C.; VLIEGENTHART, J. F. G.; VAN SOEST, J. J. G. Ageing of Starch Based Systems as Observed with FT-IR and Solid State NMR Spectroscopy. Starch/Stärke, v. 50, n. 11–12, p. 478–483, 1998.
SOLOMON, O. F.; CIUTA, I. Z. Determination de la viscosite intrinseque de solutions de polymeres par une simple determination de la viscosite. Journal ofApplied Polymer Science, v. VI, n. 24, p. 683–686, 1962.
UTHUMPORN, U.; ZAIDUL, I. S. M.; KARIM, A. A. Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, v.88, n.1, p.47–54, 2010. Available from internet:http://dx.doi.org/10.1016/j.fbp.2009.10.001.
VAN HUNG, P.; LAN PHI, N. T.; VY VY, T. T. Effect of debranching and storage condition on crystallinity and functional properties of cassava and potato starches. Starch/Stärke, v. 00, p. 1–8, 2012.
VAN KREVELEN, D. W.; VAN HEERDEN, C.; HUNTJENS, F. J. Physicochemical aspects of the pyrolysis of coal and related organic compounds. Fuel, v. 30, p. 253, 1951.
VAN KREVELEN, D. W.; VAN HEERDEN, C.; HUNTJENS, F. J. Physicochemical aspects of the pyrolysis of coal and related organic compounds. Fuel, London, v. 30, p. 253, 1951




How to Cite

Merci, A., Mali, S., & Carvalho, G. M. de. (2019). Waxy maize, corn and cassava starch: Thermal degradation kinetics. Semina: Ciências Exatas E Tecnológicas, 40(1), 13–22. https://doi.org/10.5433/1679-0375.2019v40n1p13



Original Article

Most read articles by the same author(s)