Frequency of pathogens in routine bacteriological diagnosis in fish and their antimicrobial resistance

Autores/as

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6p3259

Palabras clave:

Antimicrobial resistance, Multidrug resistant, Pathogens, Aquaculture.

Resumen

Aquaculture is one of the sectors of animal husbandry with the fastest growth rate. However, the increase in the sector's production chain without proper management can result in factors that favor the development of diseases, especially infectious diseases caused by bacteria. Many factors, such as agriculture or industry resides, improper use of antibiotics in animals or humans, have contributed to increased environmental pressure and the appearance of antibiotic-resistant bacteria, while residues from these drugs can remain in the carcasses and in water a risk to public and environmental health. From that, we identified the bacterial genus/species and their bacterial resistance to antibiotics from samples received from fish disease outbreaks for bacteriosis diagnosis between January 2017 and October 2020. Isolated bacteria were subjected to the Kirby and Bauer sensitivity test for five classes of antibiotics (penicillins, fluoroquinolones, aminoglycosides, amphenicols, and tetracyclines). Of the 181 analyzed outbreaks, 232 bacteria were isolated, including Streptococcus spp., Aeromonas spp., Edwardsiella spp., Plesiomonas shigelloides, Pseudomonas aeruginosa, Chromobacterium violaceum, Flavobacterium spp., Citrobacter spp., Enterococcus spp., Vibrio spp., Enterobacter spp., Chryseobacterium meningosepticum. Of the 232 bacteria, 40 strains were classified as multidrug resistant (MDR), with Plesiomonas shigelloides, Aeromonas spp., and Edwardsiella spp. representing more than half of this number (22/total). With several bacteria demonstrating resistance to Brazilian aquaculture-legalized drugs (tetracycline and florfenicol), it is mandatory to research, not only for alternatives to the use of antibiotics, but also for other drugs effective against the main circulating bacterial pathogens. In addition, vigilance over the occurrence of resistant bacteria is necessary, considering the appearance of zoonotic bacteria with multi-resistant characteristics, becoming a public health concern.

Biografía del autor/a

Arthur Roberto da Costa, Universidade Estadual de Londrina

Master Student in the Postgraduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Roberta Torres Chideroli, Universidade Estadual de Londrina

Post Doctorate Student in the Postgraduate Program in Animal Science, UEL, Londrina, PR, Brazil.

Larissa Melo Chicoski, Universidade Estadual de Londrina

Veterinary Infectious Diseases Intern, Department of Preventive Veterinary Medicine, UEL, Londrina, PR, Brazil.

Diego Candido de Abreu, Universidade Estadual de Londrina

Veterinary Infectious Diseases Intern, Department of Preventive Veterinary Medicine, UEL, Londrina, PR, Brazil.

Leonardo Mantovani Favero, Universidade Estadual de Londrina

Master Student in the Postgraduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Natália Amoroso Ferrari, Universidade Estadual de Londrina

Master Student in the Postgraduate Program in Animal Science, Universidade Estadual de Londrina, UEL, Londrina, PR, Brazil.

Raffaella Menegheti Mainardi, Universidade Estadual de Londrina

PhD Students in the Postgraduate Program in Animal Science, UEL, Londrina, PR, Brazil.

Vanessa Gomes da Silva, Universidade Estadual de Londrina

PhD Students in the Postgraduate Program in Animal Science, UEL, Londrina, PR, Brazil.

Ulisses Padua Pereira, Universidade Estadual de Londrina

Professor PhD, Department of Preventive Veterinary Medicine, UEL, Londrina, PR, Brazil.

Citas

Abdelhamed, H., Tekedar, H. C., Ozdemir, O., Hsu, C.-Y., Arick, M. A., Karsi, A., & Lawrence, M. L. (2018). Complete genome sequence of multidrug-resistant edwardsiella ictaluri strain MS-17-156. Genome Announcements, 6(22), 10-11. doi: 10.1128/genomeA.00477-18

Algammal, A. M., Mabrok, M., Sivaramasamy, E., Youssef, F. M., Atwa, M. H., El-kholy, A. W.,… Hozzein, W. N. (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and bla TEM, bla CTX-M, and tetA antibiotic-resistance genes. Scientific Reports, 10(1), 1-12. doi: 10.1038/s41598-020-72264-4

Arumugam, U., Stalin, N., & Rebecca, G. P. (2017). Isolation, Molecular Identification and antibiotic resistance of Enterococcus faecalis from diseased tilapia. International Journal of Current Microbiology and Applied Sciences, 6(6), 136-146. doi: 10.20546/ijcmas.2017.606.016

Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria: a study. Journal of Pathogens, 2016(1), 1-5. doi: 10.1155/2016/4065603

Behera, B. K., Bera, A. K., Paria, P., Das, A., Parida, P. K., Kumari, S.,… Das, B. K. (2018). Identification and pathogenicity of Plesiomonas shigelloides in Silver Carp. Aquaculture, 493(5), 314-318. doi: 10.10 16/j.aquaculture.2018.04.063

Bera, K. K., Karmakar, S., Jana, P., Das, S., Purkait, S., Pal, S., & Haque, R. (2018). Biosecurity in aquaculture : an overview. Aqua International, 18(12), 42-46.

Camargos, P., Fischer, G. B., Mocelin, H., Dias, C., & Ruvinsky, R. (2006). Penicillin resistance and serotyping of Streptococcus pneumoniae in Latin America. Paediatric Respiratory Reviews, 7(3), 209-214. doi: 10.1016/j.prrv.2006.04.004

Chideroli, R. T., Amoroso, N., Mainardi, R. M., Suphoronski, S. A., Padua, S. B. de, Alfieri, A. A. F. A. A.,… Pereira, U. P. (2017). Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus agalactiae in fish farms from Brazil. Aquaculture, 479(5), 45-51. doi: 10.1016/j. aquaculture.2017.05.013

Clinical and Laboratory Standards Institute (2019). Performance standards for antimicrobial susceptibility testing. (29th ed.). CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.

Doi, Y., Wachino, J.-I., & Arakawa, Y. (2016). Aminoglycoside resistance. Infectious Disease Clinics of North America, 30(2), 523-537. doi: 10.1016/j.idc.2020.06.002

Food and Agriculture Organization (2020). The state of fisheries and aquaculture in the world 2020.

Food and Drug Administration (2020). Approved aquaculture drugs. Retrieved from https://www.fda.gov/ animal-veterinary/aquaculture/approved-aquaculture-drugs

Figueiredo, H. C. P., Nobrega, L., Netto, Leal, C. A. G., Pereira, U. P., & Mian, G. F. (2012). Streptococcus iniae outbreaks in Brazilian Nile tilapia (Oreochromis niloticus L:) farms. Brazilian Journal of Microbiology, 43(2), 576-580. doi: 10.1590/S1517-83822012000200019

Freitas, M. R., Freire, N. B., Peixoto, L. J. E. S., Oliveira, S. T. L. de, Souza, R. C. de, Gouveia, J. J. de S.,… Gouveia, G. V. (2018). The presence of plasmids in Aeromonas hydrophila and its relationship with antimicrobial and heavy metal-resistance profiles. Ciencia Rural, 48(9), 1-6. doi: 10.1590/0103-8478cr 20170813

Gabriel, U. U., & Akinrotimi, O. A. (2011). Management of stress in fish for sustainable aquaculture development. Researcher, 3(4), 28-38. Retrieved from http://www.sciencepub.net/researcher/research 0304/05_4816research0304_28_38.pdf

Gao, D. X., & Gaunt, P. S. (2016). Development of new G media for culture of Flavobacterium columnare and comparison with other media. Aquaculture, 463, 113-122. doi: 10.1016/j.aquaculture.2016.05.006

Gaynes, R. (2017). The Discovery of Penicillin new insights after more than 75 years of clinical use. Emerging Infectious Diseases, 23(5), 849-853. doi: 10.3201/eid2305.161556

Griffin, M. J., Greenway, T. E., Byars, T. S., Ware, C., Aarattuthodiyil, S., Kumar, G., & Wise, D. J. (2020). Cross-protective potential of a live-attenuated Edwardsiella ictaluri vaccine against Edwardsiella piscicida in channel (Ictalurus punctatus) and channel × blue (Ictalurus furcatus) hybrid catfish. Journal of the World Aquaculture Society, 51(3), 740-749. doi: 10.1111/jwas.12696

Ip, M., Ang, I., Fung, K., Liyanapathirana, V., Luo, M. J., & Lai, R. (2016). Hypervirulent clone of group B Streptococcus serotype III sequence type 283, Hong Kong, 1993-2012. Emerging Infectious Diseases, 22(10), 1800-1803. doi: 10.3201/eid2210.151436

Kavitha, M., Raja, M., & Perumal, P. (2018). Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquaculture Reports, 11(7), 59-69. doi: 10.1016/j.aqrep.2018.07.001

Krause, K. M., Serio, A. W., Kane, T. R., & Connolly, L. E. (2016). Aminoglycosides: an overview. Cold Spring Harbor Perspectives in Medicine, 6(6), 1-18. doi: 10.1101/cshperspect.a027029

Leung, K. Y., Wang, Q., Yang, Z., & Siame, B. A. (2019). Edwardsiella piscicida: a versatile emerging pathogen of fish. Virulence, 10(1), 555-567. doi: 10.1080/21505594.2019.1621648

Loch, T. P., & Faisal, M. (2015). Emerging flavobacterial infections in fish: a review. Journal of Advanced Research, 6(3), 283-300. doi: 10.1016/j.jare.2014.10.009

Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. doi: 10.1111/raq.12344

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G.,… Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011.03570.x

Marcusso, P. F., Aguinaga, J. Y., Claudiano, G. D. S., Eto, S. F., Fernandes, D. C., Mello, H.,… Moraes, F. R. de. (2015). Influence of temperature on Streptococcus agalactiae infection in Nile tilapia. Brazilian Journal of Veterinary Research and Animal Science, 52(1), 57. doi: 10.11606/issn.1678-4456.v52i1p57-62

Martins, A. F. M., Pinheiro, T. L., Imperatori, A., Freire, S. M., Sá-Freire, L., Moreira, B. M., & Bonelli, R. R. (2019). Plesiomonas shigelloides: A notable carrier of acquired antimicrobial resistance in small aquaculture farms. Aquaculture, 500(2), 514-520. doi: 10.1016/j.aquaculture.2018.10.040

Mian, G. F., Roncancio, C. O., Souza Silva, M. C. de, Rosado Ferreira, A. C., Costa Custódio, D. A. da, Silva Souza, V. H., & Costa, G. M. da. (2020). Evaluation of resistance against Streptococcus agalactiae in four farmed strains of Nile tilapia (Oreochromis niloticus). Semina:Ciencias Agrarias, 41(1), 351-355. doi: 10.5433/1679-0359.2020v41n1p351

Miller, R. A., & Harbottle, H. (2018). Antimicrobial drug resistance in fish pathogens. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, 6(1), 501-520. doi: 10.1128/ microbiolspec.arba-0017-2017

Mobarki, N., Almerabi, B., & Hattan, A. (2019). Antibiotic resistance crisis. International Journal of Medicine in Developing Countries, 40(4), 561-564. doi: 10.24911/ijmdc.51-1549060699

Mohanty, B. R., & Sahoo, P. K. (2007). Edwardsiellosis in fish: a brief review. Journal of Biosciences, 32(3), 1331-1344. doi: 10.1007/s12038-007-0143-8

Molinari, L. M., Oliveira Scoaris, D. de, Pedroso, R. B., Lucas Rodrigues Bittencourt, N. de, Nakamura, C. V., Ueda-Nakamura, T.,… Dias, B. P., Fº. (2003). Bacterial microflora in the gastrointestinal tract of Nile tilapia, Oreochromis niloticus, cultured in a semi-intensive system. Acta Scientiarum - Biological Sciences, 25(2), 267-271. doi: 10.4025/actascibiolsci.v25i2.2007

Monir, M. S., Yusoff, S. M., Mohamad, A., & Ina-Salwany, M. Y. (2020). Vaccination of Tilapia against motile aeromonas septicemia: a review. Journal of Aquatic Animal Health, 32(2), 65-76. doi: 10.1002/ aah.10099

Monteiro, S. H., Garcia, F., & Pilarski, F. (2018). Antibiotic residues and resistant bacteria in aquaculture. The Pharmaceutical and Chemical Journal, 5(4), 127-147.

Palma, E., Tilocca, B., & Roncada, P. (2020). Antimicrobial resistance in veterinary medicine: an overview. International Journal of Molecular Sciences, 21(6), 1-21. doi: 10.3390/ijms21061914.

Pereira-Maia, E. C., Silva, P. P., Almeida, W. B. de, Santos, H. F. dos, Marcial, B. L., Ruggiero, R., & Guerra, W. (2010). Tetraciclinas e glicilciclinas: uma visão geral. Quimica Nova, 33(3), 700-706. doi: 10.1590/s0100-40422010000300038

Ryu, S., Cowling, B. J., Wu, P., Olesen, S., Fraser, C., Sun, D. S.,… Grad, Y. H. (2019). Case-based surveillance of antimicrobial resistance with full susceptibility profiles. JAC-Antimicrobial Resistance, 1(3), 1-5. doi: 10.1093/jacamr/dlz070

Safari, R., Adel, M., Lazado, C. C., Marlowe, C., & Caipang, A. (2016). Host-derived probiotics Enterococcus casseli flavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish and Shellfish Immunology, 52(5), 198-205. doi: 10.1016/j.fsi.2016.03.020.

Seo, J. S., Kwon, M. G., Youn Hwang, J., Don Hwang, S., Kim, D. H., Bae, J. S.,… Lee, J. H. (2020). Estimation of pharmacological properties of ceftiofur, an injectable cephalosporin antibiotic, for treatment of streptococcosis in cultured olive flounder Paralichthys olivaceus. Aquaculture Research, 52(2), 831-841. doi: 10.1111/are.14938

Sindicato Nacional da Indústria de Produtos para Saúde Animal (2020). Compêndio de produtos veterinários. Recuperado de https://sistemas.sindan.org.br/cpvs/pesquisar.aspx

Sumithra, T. G., Reshma, K. J., Anusree, V. N., Sayooj, P., Sharma, S. R. K., Suja, G.,… Sanil, N. K. (2019). Pathological investigations of Vibrio vulnificus infection in genetically improved farmed tilapia (Oreochromis niloticus L.) cultured at a floating cage farm of India. Aquaculture, 511(1603), 734217. doi: 10.1016/j.aquaculture.2019.734217

Suphoronski, S. A., Chideroli, R. T., Facimoto, C. T., Mainardi, R. M., Souza, F. P., Lopera-Barrero, N. M.,… Pereira, U. P. (2019). Effects of a phytogenic, alone and associated with potassium diformate, on tilapia growth, immunity, gut microbiome and resistance against francisellosis. Scientific Reports, 9(1), 1-14. doi: 10.1038/s41598-019-42480-8

Vandamme, P., Bernardet, J. F., Segers, P., Kersters, K., & Holmes, B. (1994). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. International Journal of Systematic Bacteriology, 44(4), 827-831. doi: 10.10 99/00207713-44-4-827

Vianna, R. A., Chideroli, R. T., Costa, A. R. da, Ribeiro, O. P., Fº., Oliveira, L. L. de, Donzele, J. L.,… Pereira, U. de P. (2020). Effect of experimental arginine supplementation on the growth, immunity and resistance of tilapia fingerlings to Streptococcus agalactiae. Aquaculture Research, 51(3), 1276-1283. doi: 10.1111/are.14478

Descargas

Publicado

2021-08-12

Cómo citar

Costa, A. R. da, Chideroli, R. T., Chicoski, L. M., Abreu, D. C. de, Favero, L. M., Ferrari, N. A., … Pereira, U. P. (2021). Frequency of pathogens in routine bacteriological diagnosis in fish and their antimicrobial resistance. Semina: Ciências Agrárias, 42(6), 3259–3272. https://doi.org/10.5433/1679-0359.2021v42n6p3259

Número

Sección

Artigos

Artículos más leídos del mismo autor/a