Tolerance of cultivars and clonal selections of peach rootstocks to excess aluminum
DOI:
https://doi.org/10.5433/1679-0359.2023v44n3p1127Keywords:
Aluminum resistance, Aluminum toxicity, Prunus, Root morphology, Tissue aluminum.Abstract
Forms of aluminum (Al) present in the solution of tropical and subtropical soils can cause toxicity in rootstocks and peach cultivars, impairing growth and productivity. This can be minimized by growing Al-tolerant rootstocks and cultivars. However, this is not sufficiently known, especially because plant breeding programs do not always consider tolerance as a selection variable for genetic materials. The study aimed to (a) select cultivars and clonal selections of Al-tolerant peach rootstocks, (b) identify variables that confer Al tolerance for use in genetic improvement programs, and (c) propose critical levels (NC) and ranges of toxicity (TF) of Al in relation to morphological variables of the root system. The experimental design was completely randomized, comprising a factorial of 13 (cultivars and clonal selections) x 2 (with and without Al) with three replications. Own-rooted ‘BRS Mandinho’ peach seedlings (without rootstock) and grafted seedlings of ‘BRS Mandinho’ on different cultivars and clonal rootstock selections were cultivated in a hydroponic system, composing two levels for the Al factor (absence and presence at 100 mg L−1). The morphological variables of the canopy and root system, Al accumulation in tissues, translocation factor, and the critical level (NC) and toxicity range (TF) of Al in the roots were evaluated. Rootstocks FB-SM-09-43, JB-ESM-09-13, SAS-SAU-09-71, SS-CHI-09-40, ‘Sharpe’ and VEH-GRA-09-55 were tolerant at high Al concentrations. The NC of Al in the roots in relation to the root surface area of peach rootstocks was 1400 mg Al kg−1, and the FT was between 1200 and 1500 mg Al kg−1.
Downloads
References
Alva, A. K., Edwards, D. G., Asher, C. J., & Blamey, F. P. C. (1986). Effects of phosphorus/aluminum molar ratio and calcium concentration on plant response to aluminum toxicity. Soil Science Society of America Journal, 50(1), 133-137. doi: 10.2136/sssaj1986.03615995005000010026x DOI: https://doi.org/10.2136/sssaj1986.03615995005000010026x
Badia, M. B., Maurino, V. G., Pavlovic, T., Arias, C. L., Pagani, M. A., & Andreo, C. S. (2020). Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress. The Plant Journal, 101(1), 653-665. doi: 10.1111/ tpj.14571 DOI: https://doi.org/10.1111/tpj.14571
Bahmani, R., Kim, D. G., Modareszadeh, M., Thompson, A. J., Park, J. H., Yoo, H. H., & Hwang, S. (2020). The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). Environmental Pollution, 257(10), 1-13. doi: 10.1016/j.envpol.2019.113516 DOI: https://doi.org/10.1016/j.envpol.2019.113516
Banhos, O. F. A. A., Brenda, M. D. O., Carvalho, B. M., Veiga, E. B. da, Bressan, A. C. G., Tanaka, F. A. O., & Habermann, G. (2016). Aluminum-induced decrease in CO2 assimilation in ‘Rangpur’ lime is associated with low stomatal conductance rather than low photochemical performances. Scientia Horticulturae, 205(1), 133-140. doi: 10.1016/j.scienta.2016.04.021 DOI: https://doi.org/10.1016/j.scienta.2016.04.021
Baquy, M. A. A., Li, J. Y., Xu, C. Y., Mehmood, K., & Xu, R. K. (2017). Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops. Solid Earth, 8(11), 149-159. doi: 10.5194/se-8-149-2017 DOI: https://doi.org/10.5194/se-8-149-2017
Beckman, T. G., Chaparro, J. X., & Sherman, W. B. (2008). ‘Sharpe’, a clonal plum rootstock for peach. HortScience, 43(7), 2236-2237. doi: 10.21273/HORTSCI.43.7.2236 DOI: https://doi.org/10.21273/HORTSCI.43.7.2236
Betemps, D. L., Paula, B. V., Parent, S. E., Galarca, S. P., Mayer, N. A., Marodin, G. A. B., Rozane, D. E., Natale, W., Melo, G. W. B., Parent, L., & Bruneto, G. (2020). Humboldtian diagnosis of peach tree (Prunus persica) nutrition using machine-learning and compositional methods. Agronomy, 10(6), 900. doi: 10.3390/agronomy10060900 DOI: https://doi.org/10.3390/agronomy10060900
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez, M. (2017). Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8(1767), 1-18. doi: 10.3389/fpls.2017.01767 DOI: https://doi.org/10.3389/fpls.2017.01767
Dorneles, A. O. S., Pereira, A. S., Rossato, L. V., Possebom, G., Sasso, V. M., Bernardy, K., Sandri, R. Q., Nicoloso, F. T., Ferreira, P. A. A., & Tabaldi, L. A. (2016). Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Ciência Rural, 46(3), 506-512. doi: 10.1590/0103-8478cr20150585 DOI: https://doi.org/10.1590/0103-8478cr20150585
Du, H., Huang, Y., Qu, M., Li, Y., Hu, X., Yang, W., Li, H., He, W., Ding, J., Liu, C., Gao, S., Cao, M., Lu, Y., & Zhang, S. (2020). A maize ZmAT6 gene confers aluminum tolerance via reactive oxygen species scavenging. Frontiers in Plant Science, 11(1016), 1-12. doi: 10.3389/fpls.2020.01016 DOI: https://doi.org/10.3389/fpls.2020.01016
Eldem, V. C., Akcay, U. C., Ozhuner, E., Bakır, Y., Uranbey, S., & Unver, T. (2012). Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughputdeepsequencing. PLoS ONE, 7(12), 1-14. doi: 10.1371/journal.pone.0050298 DOI: https://doi.org/10.1371/journal.pone.0050298
Empresa Brasileira de Pesquisa Agropecuária (2009). Manual de análises químicas de solos, plantas e fertilizantes (2a ed.). EMBRAPA.
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511790942
He, H., Li, Y., & He, L. F. (2019). Aluminum toxicity and tolerance in Solanaceae plants. South African Journal of Botany, 123(1), 23-29. doi: 10.1016/j.sajb.2019.02.008 DOI: https://doi.org/10.1016/j.sajb.2019.02.008
Hoagland, D. R., & Arnon D. I. (1950). The waterculture method for growing plants without soil. (Circ. 347). Agric. Exp. Stn., Univ. Of California.
Kyveryga, P., Caragea, P. C., Kaiser, M. S., & Blackmer, T. M. (2013). Predicting risk of reduced nitrogen fertilization using hierarchical models and on-farm data. Agronomy Journal, 105(1), 85-94. doi: 10.2134/agronj2012.0218 DOI: https://doi.org/10.2134/agronj2012.0218
Mahdavian, K. (2021). Effect of citric acid on antioxidant activity of red bean (Phaseolus calcaratus L.) under Cr+6 stress. South African Journal of Botany, 139(12), 83-91. doi: 10.1016/j.sajb.2021.02.002 DOI: https://doi.org/10.1016/j.sajb.2021.02.002
Mayer, N. A, & Ueno, B. (2021). Peach tree short life in Rio Grande do Sul State, Brazil. Agrociencia Uruguay, 25(395), 1-17. doi: 10.31285/AGRO.25.395 DOI: https://doi.org/10.31285/AGRO.25.395
Mayer, N. A., Ueno, B., & Antunes, L. E. C. (2009). Seleção e clonagem de porta enxertos tolerantes à morte-precoce do pessegueiro. (Comunicado Técnico, 209). EMBRAPA Clima Temperado.
Mayer, N. A., Ueno, B., Rickes, T. B., & Resende, M. V. L. A. (2020). Cloning of rootstock selections and Prunus spp. cultivars by softwood cuttings. Scientia Horticuturae, 273(1), 1-11. doi: 10.1016/j.scienta.2020.109609 DOI: https://doi.org/10.1016/j.scienta.2020.109609
Mayer, N. A., Ueno, B., Silva, V. A. L., Valgas, R. A., & Silveira, C. A. P. (2015). A morte precoce do pessegueiro associada à fertilidade do solo. Revista Brasileira de Fruticultura, 37(3), 773-778. doi: 10.1590/0100-2945-156/14 DOI: https://doi.org/10.1590/0100-2945-156/14
Nava, G., Reisser, C., Jr., Parent, L.-É., Brunetto, G., Moura-Bueno, J. M., Navroski, R., Benati, J. A., & Barreto, C. F. (2022). Esmeralda peach (Prunus persica) fruit yield and quality response to nitrogen fertilization. Plants, 11(3), 352. doi: 10.3390/ plants11030352 DOI: https://doi.org/10.3390/plants11030352
Padarian, J., Minasny B., & McBratney, A. B. (2020). Machine learning and soil sciences: a review aided by machine learning tools. Soil, 6(1), 35-52. doi: 10.5194/soil-6-35-2020 DOI: https://doi.org/10.5194/soil-6-35-2020
Paula, B. V., Sete, P. B., Trapp, T., Vitto, B., Zalamena, J., Melo, G. W. B., Rozane, D. E., Baldi, E., Toselli, M., & Bruneto, G. (2021). Annual and residual urea nitrogen contribution to the nutrition of peach trees (Prunus persica L.) grown under subtropical climate. Scientia Horticulturae, 284(10), 1-6. doi: 10.1016/j.scienta.2021.110099 DOI: https://doi.org/10.1016/j.scienta.2021.110099
Plummer, M. (2016). Rjags: bayesian graphical models using MCMC.
R Core Team (2022). R: a language and environment for statistical computing.
Rahman, M. A., Lee, S. H., Ji, H. C., Kabir, A. H., Jones, C. S., & Lee, K. W. (2018). Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular, 19(10), 1-28. doi: 10.3390/ijms19103073 DOI: https://doi.org/10.3390/ijms19103073
Raj, D., Kumar, A., & Maiti, S. K. (2020). Mercury remediation potential of Brassica juncea (L.) Czern. For clean-up of flyash contaminated sites. Chemosphere, 248(1), 1-9. doi: 10.1016/j.chemosphere.2020.125857 DOI: https://doi.org/10.1016/j.chemosphere.2020.125857
Ranjan, A., Sinha, R., Sharma, T. R., Pattanayak, A., & Singh, A. K. (2021). Alleviating aluminum toxicity in plants: implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiologia Plantarum, 173(4), 1-20. doi: 10.1111/ppl.13382 DOI: https://doi.org/10.1111/ppl.13382
Raseira, M. C. B., Scaranari, C., Franzon, R. C., Feldberg, N. P., & Nakasu, B. H. (2016). ‘BRS Mandinho’: the first platycarpa peach cultivar released in Brazil. Revista Brasileira de Fruticultura, 38(3), 1-4. doi: 10.1590/0100-29452016616 DOI: https://doi.org/10.1590/0100-29452016616
Reighard, G. L., & Loreti, F. (2008). Rootstock development. In D. R. Layne, & D. Bassi, The peach: botany, production and uses (pp. 193-220). Oxfordshire. DOI: https://doi.org/10.1079/9781845933869.0193
Reis, A. R., Lisboa, L. A. M., Reis, H. P. G., Barcelos, J. P. de Q., Santos, E. F., Santini, J. M. K., & Lavres, J. (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiology and Biochemistry, 130(1), 377-390. doi: 10.1016/j.plaphy.2018.07.028 DOI: https://doi.org/10.1016/j.plaphy.2018.07.028
Ribeiro, A. P., Vinecky, F., Duarte, K. E., Santiago, T. R., Casari, R. A. C. N., Hell, A. F., & Molinari, H. B. C. (2021). Enhanced aluminum tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp. BMC Plant Biology, 21(300), 1-15. doi: 10.1186/s12870-021-02975-x DOI: https://doi.org/10.1186/s12870-021-02975-x
Rodrigues, A. A., Vasconcelos, S. C., Fº., Müller, C., Rodrigues, D. A., Sales, J. F., Zuchi, J., & Barbosa, D. P. (2019). Tolerance of Eugenia dysenterica to aluminum: germination and plant growth. Plants, 8(9), 1-15. doi: 10.3390/plants8090317 DOI: https://doi.org/10.3390/plants8090317
Shetty, R., Vidya, C. S., Prakash, N. B., Lux, A., & Vaculík, M. (2021). Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Science of the Total Environment, 65(1), 1-11. doi: 10.1016/j.scitotenv.2020.142744 DOI: https://doi.org/10.1016/j.scitotenv.2020.142744
Sun, L., Zhang, M., Liu, X., Mao, Q., Shi, C., Kochian, L. V., & Liao, H. (2020). Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology, 62(7), 984-987. doi: 10.1111/jipb.12942 DOI: https://doi.org/10.1111/jipb.12942
Theobald, C. M., & Talbot, M. (2002). The Bayesian choice of crop variety and fertilizer dose. Applied Statistics, 51(1), 23-26. doi: 10.1111/1467‐9876.04863 DOI: https://doi.org/10.1111/1467-9876.04863
Wei, Y., Han, R., Xie, Y., Jiang, C., & Yu, Y. (2021). Recent advances in understanding mechanisms of plant tolerance and response to aluminum toxicity. Sustainability, 13(4), 1-22. doi: 10.3390/su13041782 DOI: https://doi.org/10.3390/su13041782
Yan, L., Riaz, M., Liu, J., Yu, M., & Cuncang, J. (2021). The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Critical Reviews in Environmental Science and Technology, 52(9), 1-37. doi: 10.1080/10643389.2020.1859306. DOI: https://doi.org/10.1080/10643389.2020.1859306
Zhang, H., Li, Xy., Lin, M., Hu, P., Lai, N., Huang, Z., & Chen, L. (2022). The aluminum distribution and translocation in two citrus species difering in aluminum tolerance. BMC Plant Biology, 22(93), 1-11. doi: 10.1186/s12870-022-03472-5 DOI: https://doi.org/10.1186/s12870-022-03472-5
Zhang, X., Long, Y., Huang, J., & Xia, J. (2019). Molecular mechanisms for coping with al toxicity in plants. International Journal of Molecular Sciences, 20(7), 1-16. doi: 10.3390/ijms20071551 DOI: https://doi.org/10.3390/ijms20071551
Zhu, C. Q., Cao, X. C., Zhu, L. F., Hu, W. J., Hu, A. Y., Abliz, B., Bai, Z. G., Huang, J., Liang, Q. D., Sajid, H., Li, Y. F., Wang, L. P., Jin, Q. Y., & Zhang, J. H. (2019). Boron reduces cell wall aluminum content in rice (Oryza sativa) roots by decreasing H2O2 accumulation. Plant Physiology and Biochemistry, 138(10), 80-90. doi: 10.1016/j. plaphy.2019.02.022 DOI: https://doi.org/10.1016/j.plaphy.2019.02.022
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Semina: Ciências Agrárias

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.