Subclinical mastitis in Jersey dairy cows and its effects on productivity and inflammatory markers

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n3p819

Keywords:

Dairy cattle, Somatic cell count, Lactose, Paraoxonase 1.

Abstract

This study assessed the effect of subclinical mastitis on the productivity and inflammatory markers in Jersey dairy cows. Blood, milk, and milk yield data were collected from 59 Jersey dairy cows reared under a semi-extensive system. Milk samples were collected from individual collectors and evaluated for their somatic cell count (SCC), lactose (Lact), protein, fat, total and defatted dry extracts (DDE), casein, freezing point, and milk urea nitrogen (MUN) levels. After milking, blood was collected by puncturing the coccygeal arteriovenous complex. In the serum samples, the inflammatory biomarkers paraoxonase-1, albumin, and total plasma protein levels were analyzed using colorimetric methods. Samples of the entire diet provided and pastures were submitted for bromatological analysis. Additionally, the body condition score, number of lactations, milk yield, days of lactation, calving interval, number of inseminations until conception, calving-conception interval, and days of pregnancy were analyzed. The cows were categorized based on their SCC into a subclinical mastitis group (SubG), with SCC levels greater than or equal to 200,000 cells/mL, and a control group (CG), with SCC levels below 200,000 cells/mL. Blood metabolic variables, milk quality, and milk production data were analyzed using multivariate regression, analysis of variance, and logistic regression using the SAS® program. The multivariate regression analysis revealed that several markers, such as Lact, total protein, and casein, influenced milk composition, predicting over 97% of the data. The SubG showed lower concentrations of Lact (4.37 vs. 4.47%; P = 0.0002), MUN (20.55 vs. 23.85 mg/dL; P = 0.02), and DDE (9.24 vs. 9.50%; P = 0.02) compared with the CG; moreover, animals in the SubG had a higher number of lactations compared with those in the CG (4.30 vs. 2.69; P = 0.0039). Cows with a Lact content lower than 4.265% (quartile 25%), compared with those with Lact content greater than 4.565% (quartile 100%), were 52 times more likely to have subclinical mastitis. Jersey dairy cows with subclinical mastitis have lower Lact, urea, and defatted dry extract levels in their milk as well as a higher number of lactations. Therefore, Lact levels in milk serve as a good diagnostic marker of subclinical mastitis in Jersey cows. Subclinical mastitis in Jersey dairy cows did not decrease milk yield nor effect reproductive performance.

Downloads

Download data is not yet available.

Author Biographies

Greyce Kelly Schmitt Reitz, Instituto Federal Catarinense

Master Student, Post-Graduation Program in Animal Production and Health, Instituto Federal Catarinense, IFC, Araquari, SC, Brazil.

Mariana Monteiro Boeng Pelegrini, Instituto Federal Catarinense

Master Student, Post-Graduation Program in Animal Production and Health, Instituto Federal Catarinense, IFC, Araquari, SC, Brazil.

Pietra Viertel Molinari, Instituto Federal Catarinense

Veterinary Medicine Graduate Students, IFC, Araquari, SC, Brazil.

Uriel Secco Londero, Universidade Federal de Pelotas

Researcher in Universidade Federal de Pelotas, UFPel, Núcleo de Pesquisa, Ensino e Extensão em Pecuária, NUPEEC, Pelotas, RS, Brazil.

Josiane de Oliveira Feijó, Universidade Federal de Pelotas

Researcher in Universidade Federal de Pelotas, UFPel, Núcleo de Pesquisa, Ensino e Extensão em Pecuária, NUPEEC, Pelotas, RS, Brazil.

Marcio Nunes Corrêa, Universidade Federal de Pelotas

Researcher in Universidade Federal de Pelotas, UFPel, Núcleo de Pesquisa, Ensino e Extensão em Pecuária, NUPEEC, Pelotas, RS, Brazil.

Joao Alveiro Alvarado-Rincón, Universidade Federal de Pelotas

Researcher in Universidade Federal de Pelotas, UFPel, Núcleo de Pesquisa, Ensino e Extensão em Pecuária, NUPEEC, Pelotas, RS, Brazil.

Juliano Santos Gueretz, Instituto Federal Catarinense

Prof., Post-Graduation Program in Animal Production and Health, IFC, Araquari, SC, Brazil.

Vanessa Peripolli, Instituto Federal Catarinense

Profa., Post-Graduation Program in Animal Production and Health, IFC, Araquari, SC, Brazil.

Elizabeth Schwegler, Instituto Federal Catarinense

Profa., Post-Graduation Program in Animal Production and Health, IFC, Araquari, SC, Brazil.

References

Alessio, D. R. M., Velho, J. P., McManus, C. M., Knob, D. A., Vancin, F. R., Antunes, G. V., Busanello, M., De Carli, F., & Thaller, A., Neto (2021). Lactose and its relationship with other milk constituents, somatic cell count, and total bacterial count. Livestock Science, 252, 104678. doi: 10.1016/j.livsci.2021.104678 DOI: https://doi.org/10.1016/j.livsci.2021.104678

Antanaitis, R., Juozaitienė, V., Jonike, V., Baumgartner, W., & Paulauskas, A. (2021). Milk lactose as a biomarker of subclinical mastitis in dairy cows. Animals, 11(6), 1-11. doi: 10.3390/ani11061736 DOI: https://doi.org/10.3390/ani11061736

Bittante, G. (2022). Effect of breed of cow, farm intensiveness, and cow’s productivity on infrared predicted milk urea. Journal Dairy Science, 105(6), 5084-5096. doi: 10.3168/jds.2021-21105 DOI: https://doi.org/10.3168/jds.2021-21105

Boas, D. F. V., Vercesi Filho, A. E., Pereira, M. A., Roma, L. C. Jr., & El Faro, L. (2017). Association between electrical conductivity and milk production traits in dairy Gyr cows. Journal of Applied Animal Research, 45(1), 227-233. doi: 10.1080/09712119.2016.1150849 DOI: https://doi.org/10.1080/09712119.2016.1150849

Bobbo, T., Ruegg, P. L., Stocco, G., Fiore, E., Gianesella, M., Morgante, M., Pasotto, D., Bittante, G., & Cecchinato, A. (2017). Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. Journal of Dairy Science, 100(6), 4868-4883. doi: 10.3168/jds.2016-12353 DOI: https://doi.org/10.3168/jds.2016-12353

Bonestroo, J., van der Voort, M., Fall, N., Emanuelson, U., Klaas, I. C., & Hogeveen, H. (2022). Estimating the nonlinear association of online somatic cell count, lactate dehydrogenase, and electrical conductivity with milk yield. Journal of Dairy Science, 105(4), 3518-3529. doi: 10.3168/jds.2021-21351 DOI: https://doi.org/10.3168/jds.2021-21351

Browne, R. W., Koury, S. T., Marion, S., Wilding, G., Muti, P., & Trevisan, M. (2007). Accuracy and biological variation of human serum paraoxonase 1 activity and polymorphism (Q192R) by kinetic enzyme assay. Clinical Chemistry, 53(2), 310-317. doi: 10.1373/clinchem.2006.074559 DOI: https://doi.org/10.1373/clinchem.2006.074559

Carvalho-Sombra, T. C. F., Fernandes, D. D., Bezerra, B. M. O., & Nunes-Pinheiro, D. C. S. (2021). Systemic inflammatory biomarkers and somatic cell count in dairy cows with subclinical mastitis. Veterinary and Animal Science, 11, 100165. doi: 10.1016/j.vas.2021.100165 DOI: https://doi.org/10.1016/j.vas.2021.100165

Chakraborty, S., Dhama, K., Tiwari, R., Iqbal Yatoo, M., Khurana, S. K., Khandia, R., Munjal, A., Munuswamy, P., Kumar, M. A., Singh, M., Singh, R., Gupta, V. K., & Chaicumpa, W. (2019). Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population a review. Veterinary Quarterly, 39(1), 76-94. doi: 10.1080/01652176.2019.1642546 DOI: https://doi.org/10.1080/01652176.2019.1642546

Costa, A., Bovenhuis, H., & Penasa, M. (2020). Changes in milk lactose content as indicators for longevity and udder health in Holstein cows. Journal of Dairy Science, 103(12), 11574-11584. doi: 10.3168/jds.2020-18615 DOI: https://doi.org/10.3168/jds.2020-18615

Costa, A., Lopez-Villalobos, N., Sneddon, N. W., Shalloo, L., Franzoi, M., De Marchi, M., & Penasa, M. (2019). Invited review: Milk lactose—Current status and future challenges in dairy cattle. Journal of Dairy Science, 102(7), 5883-5898. doi: 10.3168/jds.2018-15955 DOI: https://doi.org/10.3168/jds.2018-15955

Dahl, M. O., De Vries, A., Maunsell, F. P., Galvao, K. N., Risco, C. A., & Hernandez, J. A. (2018). Epidemiologic and economic analyses of pregnancy loss attributable to mastitis in primiparous Holstein cows. Journal of Dairy Science, 101(11), 10142-10150. doi: 10.3168/jds.2018-14619 DOI: https://doi.org/10.3168/jds.2018-14619

DePeters, E. J., & Ferguson, J. D. (1992). Nonprotein nitrogen and protein distribution in the milk of cows. Journal of Dairy Science, 75(11), 3192-3209. doi: 10.3168/jds.S0022-0302(92)78085-0 DOI: https://doi.org/10.3168/jds.S0022-0302(92)78085-0

Fernandes, L., Guimaraes, I., Noyes, N. R., Caixeta, L. S., & Machado, V. S. (2021). Effect of subclinical mastitis detected in the first month of lactation on somatic cell count linear scores, milk yield, fertility, and culling of dairy cows in certified organic herds. Journal of Dairy Science, 104(2), 2140-2150. doi: 10.3168/jds.2020-19153 DOI: https://doi.org/10.3168/jds.2020-19153

Gallo, L., Tagliapietra, F., Giannuzzi, D., Cecchinato, A., Sturaro, E., & Schiavon, S. (2023). Effect of intramammary infection and inflammation on milk protein profile assessed at the quarter level in Holstein cows. Journal of Dairy Science, 107(3), 1413-1426. doi: 10.3168/jds.2023-23818 DOI: https://doi.org/10.3168/jds.2023-23818

Gibson, K. D., & Dechow, C. D. (2018). Genetic parameters for yield, fitness, and type traits in US Brown Swiss dairy cattle. Journal of Dairy Science, 101(2), 1251-1257. doi: 10.3168/jds.2017-13041 DOI: https://doi.org/10.3168/jds.2017-13041

Gonçalves, J. L., Kamphuis, C., Vernooij, H., Araújo, J. P., Grenfell, R. C., Juliano, L., Anderson, K. L., Hogeveen, H., & Santos, M. V. dos. (2020). Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Veterinary Journal, 262, 105473. doi: 10.1016/j.tvjl.2020.105473 DOI: https://doi.org/10.1016/j.tvjl.2020.105473

Gross, J. J., Grossen-Rösti, L., Wall, S. K., Wellnitz, O., & Bruckmaier, R. M. (2020). Metabolic status is associated with the recovery of milk somatic cell count and milk secretion after lipopolysaccharide-induced mastitis in dairy cows. Journal of Dairy Science, 103(6), 5604-5615. doi: 10.3168/jds.2019-18032 DOI: https://doi.org/10.3168/jds.2019-18032

Gustafsson, A. H., & Palmquist, D. L. (1993). Diurnal variation of rumen ammonia, serum urea, and milk urea in dairy cows at high and low yields. Journal of Dairy Science, 76(2), 475-484. doi: 10.3168/jds.S0022-0302(93)77368-3 DOI: https://doi.org/10.3168/jds.S0022-0302(93)77368-3

Haile-Mariam, M., & Pryce, J. E. (2017). Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems. Journal of Dairy Science, 100(5), 3754-3766. doi: 10.3168/jds.2016-11952 DOI: https://doi.org/10.3168/jds.2016-11952

Herve, L., Lollivier, V., Quesnel, H., & Boutinaud, M. (2018). Oxytocin induces mammary epithelium disruption and could stimulate epithelial cell exfoliation. Journal of Mammary Gland Biology and Neoplasia, 23(3), 139-147. doi: 10.1007/s10911-018-9400-8 DOI: https://doi.org/10.1007/s10911-018-9400-8

International Dairy Federation (2013). Guidelines for the use and interpretation of bovine milk somatic cell count. Bull IDF 466.

Liu, K., Zhang, Y., Huang, G., Zheng, N., Zhao, S., & Wang, J. (2022). Ruminal bacterial community is associated with the variations of total milk solid content in Holstein lactating cows. Animal Nutrition, 9, 175-183. doi: 10.1016/j.aninu.2021.12.005 DOI: https://doi.org/10.1016/j.aninu.2021.12.005

Martins, L. F., Menta, P. R., Fernandes, L., Machado, V. S., & Neves, R. C. (2021). Prolonged, low-grade inflammation in the first week of lactation: Associations with mineral, protein, and energy balance markers, and milk yield, in a clinically healthy Jersey cow cohort. Journal of Dairy Science, 104(5), 6113-6123. doi: 10.3168/jds.2020-19538 DOI: https://doi.org/10.3168/jds.2020-19538

Masia, F., Molina, G., Vissio, C., Balzarini, M., Sota, R. L. de la, & Piccardi, M. (2022). Quantifying the negative impact of clinical diseases on productive and reproductive performance of dairy cows in central Argentina. Livestock Science, 259, 104894. doi: 10.1016/j.livsci.2022.104894 DOI: https://doi.org/10.1016/j.livsci.2022.104894

Nedić, S., Vakanjac, S., Samardžija, M., & Borozan, S. (2019). Paraoxonase 1 in bovine milk and blood as marker of subclinical mastitis caused by Staphylococcus aureus. Research in Veterinary Science, 125, 323-332. doi: 10.1016/j.rvsc.2019.07.016 DOI: https://doi.org/10.1016/j.rvsc.2019.07.016

Pegolo, S., Giannuzzi, D., Bisutti, V., Tessari, R., Gelain, M. E., Gallo, L., Schiavon, S., Tagliapietra, F., Trevisi, E., Ajmone Marsan, P., Bittante, G., & Cecchinato, A. (2021). Associations between differential somatic cell count and milk yield, quality, and technological characteristics in Holstein cows. Journal of Dairy Science, 104(4), 4822-4836. doi: 10.3168/jds.2020-19084 DOI: https://doi.org/10.3168/jds.2020-19084

Prates, E. R. (2007). Técnicas de pesquisa em nutrição animal. Editora da UFRGS.

Ptak, E., Brzozowski, P., & Bieniek, J. (2012). Genetic parameters for lactose percentage in the milk of polish holstein-friesians. Journal of Animal and Feed Sciences, 21(2), 251-262. doi: 10.22358/jafs/66072/2012 DOI: https://doi.org/10.22358/jafs/66072/2012

Rainard, P., Foucras, G., Boichard, D., & Rupp, R. (2018). Invited review: low milk somatic cell count and susceptibility to mastitis. Journal of Dairy Science, 101(8), 6703-6714. doi: 10.3168/jds.2018-14593 DOI: https://doi.org/10.3168/jds.2018-14593

Rienesl, L., Marginter, M., Stückler, P., Köck, A., Egger-Danner, C., & Sölkner, J. (2022). Use of differential somatic cell count, somatic cell score, and milk mid-infrared spectral analysis for monitoring mastitis in dairy cows during routine milk recording. Livestock Science, 264, 105050. doi: 10.1016/j.livsci.2022.105050 DOI: https://doi.org/10.1016/j.livsci.2022.105050

Roveglia, C., Niero, G., Penasa, M., Finocchiaro, R., Marusi, M., Lopez-Villalobos, N., & Cassandro, M. (2019). Phenotypic analysis of milk composition, milk urea nitrogen and somatic cell score of Italian Jersey cattle breed. Italian Journal of Animal Science, 18(1), 405-409. doi: 10.1080/1828051X.2018.1531684 DOI: https://doi.org/10.1080/1828051X.2018.1531684

Sathiyabarathi, M., Jeyakumar, S., Manimaran, A., Pushpadass, H. A., Sivaram, M., Ramesha, K. P., Das, D. N., & Kataktalware, M. A. (2018). Infrared thermal imaging of udder skin surface temperature variations to monitor udder health status in Bos indicus (Deoni) cows. Infrared Physics & Technology, 88, 239-244. doi: 10.1016/j.infrared.2017.11.028 DOI: https://doi.org/10.1016/j.infrared.2017.11.028

Schwegler, E., Schneider, A., Krauser, A. R. T., Montagner, P., Schmitt, E., Del Pino, F. A. B., Rabassa, V. R., Xavier, E. G., Demarco, C. F., Peripolli, V., & Corrêa, M. N. (2018). Serum metabolic markers pre and postpartum in Holstein cows according to the mastitis occurrence. Acta Scientiae Veterinariae, 46(1), 1-6. doi: 10.22456/1679-9216.86666 DOI: https://doi.org/10.22456/1679-9216.86666

Schwegler, E., Schneider, A., Montagner, P., Acosta, D. A. V., Pfeifer, L. F. M., Schmitt, E., Rabassa, V. R., Del Pino, F. A. B., Lima Gonzalez, H. de, Timm, C. D., & Corrêa, M. N. (2013). Predictive value of prepartum serum metabolites for incidence of clinical and subclinical mastitis in grazing primiparous Holstein cows. Tropical Animal Health and Production, 45(7), 1549-1555. doi: 10.1007/s11250-013-0398-z DOI: https://doi.org/10.1007/s11250-013-0398-z

Sears, A., Gonzalez, O., Alberto, A., Young, A., Souza, J. de, Relling, A., & Batistel, F. (2020). Effect of feeding a palmitic acid-enriched supplement on production responses and nitrogen metabolism of mid-lactating Holstein and Jersey cows. Journal of Dairy Science, 103(10), 8898-8909. doi: 10.3168/jds.2020-18232 DOI: https://doi.org/10.3168/jds.2020-18232

Shi, H., Guo, Y., Liu, Y., Shi, B., Guo, X., Jin, L., & Yan, S. (2016). The in vitro effect of lipopolysaccharide on proliferation, inflammatory factors and antioxidant enzyme activity in bovine mammary epithelial cells. Animal Nutrition, 2(2), 99-104. doi: 10.1016/j.aninu.2016.03.005 DOI: https://doi.org/10.1016/j.aninu.2016.03.005

Silveira, P. A. S., Butler, W. R., LaCount, S. E., Overton, T. R., Barros, C. C., & Schneider, A. (2019). Polymorphisms in the anti-oxidant paraoxonase-1 (PON1) gene associated with fertility of postpartum dairy cows. Theriogenology, 125, 302-309. doi: 10.1016/j.theriogenology.2018.11.024 DOI: https://doi.org/10.1016/j.theriogenology.2018.11.024

Stocco, G., Summer, A., Cipolat-gotet, C., Zanini, L., Vairani, D., Dadousis, C., & Zecconi, A. (2020). Differential Somatic Cell Count as a Novel Indicator of Milk Quality in Dairy Cows. Animals, 10(5), 1-15. doi: 10.3390/ani10050753 DOI: https://doi.org/10.3390/ani10050753

Televičius, M., Juozaitiene, V., Malašauskienė, D., Antanaitis, R., Rutkauskas, A., Urbutis, M., & Baumgartner, W. (2021). Inline milk lactose concentration as biomarker of the health status and reproductive success in dairy cows. Agriculture, 11(1), 1-11. doi: 10.3390/agriculture11010038 DOI: https://doi.org/10.3390/agriculture11010038

Tsunoda, E., Gross, J. J., Kawashima, C., Bruckmaier, R. M., Kida, K., & Miyamoto, A. (2017). Feed-derived volatile basic nitrogen increases reactive oxygen species production of blood leukocytes in lactating dairy cows. Animal Science Journal, 88(1), 125-133. doi: 10.1111/asj.12608 DOI: https://doi.org/10.1111/asj.12608

Downloads

Published

2024-05-22

How to Cite

Reitz, G. K. S., Pelegrini, M. M. B., Molinari, P. V., Londero, U. S., Feijó, J. de O., Corrêa, M. N., … Schwegler, E. (2024). Subclinical mastitis in Jersey dairy cows and its effects on productivity and inflammatory markers. Semina: Ciências Agrárias, 45(3), 819–834. https://doi.org/10.5433/1679-0359.2024v45n3p819

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.