Modeling of soil loss by water erosion in the Tietê River Hydrographic Basin, São Paulo, Brazil
DOI:
https://doi.org/10.5433/1679-0359.2022v43n4p1403Keywords:
RUSLE, Sediment delivery rate, Soil conservation, Soil sustainability.Abstract
Since the mid-16th century, the Tietê River has been an important route for the territorial occupation and exploitation of natural resources in the interior of São Paulo and Brazil. Currently, the Tietê River is well known for environmental problems related to water pollution and contamination. However, little attention has been focused on water erosion, which is a serious issue that affects the soils and waters of the hydrographic basin. Thus, this work aimed to estimate soil loss caused by water erosion in this basin, which has an area of approximately 72,000 km², using the Revised Universal Soil Loss Equation (RUSLE). The RUSLE parameter survey and soil loss calculation were performed using geoprocessing techniques. The RUSLE estimated an average soil loss of 8.9 Mg ha-1 yr-1 and revealed that 18% of the basin's territory presents high erosion rates. These are priority zones for conservation practices to reduce water erosion and ensure long-term soil sustainability. The estimated sediment transport was 1.3 Mg ha-1 yr-1, whereas the observed sedimentation, which was calculated based on data from the fluviometric station, was 0.8 Mg ha-1 yr-1. Thus, the results were equivalent considering the large size of the study area and can be used to assist in managing the basin. Estimating soil losses can help in the planning of sustainable management of the Tietê River Hydrographic Basin and highlights the importance of minimizing water erosion, thus helping to prevent additional pollution and contamination with sediments, agrochemicals, and fertilizers.Downloads
References
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi: 10.1127/0941-2948/2013/ 0507
Amorim, R. S. S., Silva, D. D., Pruski, F. F., & Matos, A. T. (2010). Avaliação do desempenho dos modelos de predição da erosão hídrica USLE, RUSLE e WEPP para diferentes condições edafoclimáticas do Brasil. Engenharia Agrícola, 30(6), 1046-1049. doi: 10.1590/S0100-69162010000600006
Avanzi, J. C., Silva, M. L. N., Curi, N., Norton, L. D., Beskow, S., & Martins, S. G. (2013). Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest. Ciência e Agrotecnologia, 37(5), 427-434. doi: 10.1590/S1413-70542013000500006
Bagarello, V., Di Stefano, V., Ferro, V., Giordano, G., Iovino, M., & Pampalone, V. (2012). Estimating the USLE soil erodibility factor in Sicily, South Italy. Applied Engineering in Agriculture, 28(2), 199-206. doi: 10.13031/2013.41347
Batista, P. V. G., Silva, M. L. N., Silva, B. P. C., Curi, N., Bueni, I. T., Acérbi, F. W., Jr., Davies, J., & Quinton, J. (2017). Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin - Brazil. Catena, 157, 139-150. doi: 10.1016/j.catena.2017.05.025
Bertol, I., & Almeida, J. A. (2000). Tolerância de perda de solo por erosão para os principais solos do estado de Santa Catarina. Revista Brasileira de Ciência do Solo, 24(2), 657-668. doi: 10.1590/S0100-06832000 000300018
Bertol, I., Cassol, E. A., & Merten, G. H. (2019). Modelagem e modelos utilizados para estimar a erosão do solo. In I. Bertol, I. C. de Maria, & L. S. Souza (Eds.), Manejo e conservação do solo e da água (pp. 462-497). Viçosa, MG: SBCS.
Beskow, S., Mello, C. R., Norton, L. D., Curi, N., Viola, M. R., & Avanzi, J. C. (2009). Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena, 79(1), 49-59. doi: 10.1016/j.catena. 2009.05.010
Biblioteca Virtual (2018). São Paulo: hidrografia. Governo do Estado de São Paulo. https://www.saopaulo. sp.gov.br/spnoticias/orgaos-governamentais/biblioteca-virtual/
Borrelli, P., Oost, V. K., Meusburger, K., Alewell, C., Lugato, E., & Panagos, P. (2018). A step towards a holistic assessment of soil degradation in Europe: coupling on-site erosion with sediment transfer and carbon fluxes. Environmental Research, 161, 291-298. doi: 10.1016/j.envres.2017.11.009
Bruno, E. S. (1991). História e tradições da cidade de São Paulo. Hucitec.
Corrêa, E. A., Moraes, I. C., Cunha, C. M. L., & Pinto, S. A. F. (2018). Influência do cultivo de cana-de-açúcar nas perdas de solo por erosão hídrica em Cambissolos no Estado de São Paulo. Revista Brasileira de Geomorfologia, 19(2), 231-243. doi: 10.20502/rbg.v19i2.1303
Cunha, E. R., Bacani, V. M., & Panachuki, E. (2017). Modeling soil erosion using RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Natural Hazards, 85, 851-868. doi: 10. 1007/s11069-016-2607-3
Dechen, S. C. F., Telles, T. S., Guimarães, M. F., & Maria, I. C. (2015). Perdas e custos associados à erosão hídrica em função de taxas de cobertura do solo. Bragantia, 74(2), 224-233. doi: 10.1590/1678-4499.0363
Devátý, J., Dostál, T., Hösl, R., Krása, J., & Strauss, P. (2019). Effects of historical land use and land pattern changes on soil erosion - Case studies from Lower Austria and Central Bohemia. Land Use Policy, 82(1), 674-685. doi: 10.1016/j.landusepol.2018.11.058
Environmental Systems Research Institute (2016) ARCGIS Professional GIS for the desktop version 10.5. Redlands, Software. ESRI. Retrieved from https://desktop.arcgis.com/en/arcmap/10.5/get-started/setup/ arcgis-desktop-quick-start-guide.htm
Fernandes, A. M., Nolasco, M. B., Hissler, C., & Mortatti, J. (2012). Mechanical erosion in a tropical river basin in southeastern Brazil: chemical characteristics and annual fluvial transport mechanisms. Journal of Geological Research, 2012, 127109. doi: 10.1155/2012/127109
Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS - a case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953-961. doi: 10.1016/j.gsf. 2015.
10.007
Lei Nº 12.651, de 25 de maio de 2012 (2012). Código Florestal Brasileiro, DF. http://www. planalto.gov.br/ ccivil_03/_ato2011-2014/2012/lei/l12651.htm
Lense, G. H. E., Avanzi, J. C., Parreiras, T. C., & Mincato, R. L. (2020). Effects of deforestation on water erosion rates in the Amazon region. Revista Brasileira de Ciências Agrárias, 15(4), e8500. doi: 10.5039/ agraria.v15i4a8500
Lense, G. H. E., Parreiras, T. C., Spalevic, V., Avanzi, J. C., & Mincato, R. L. (2021). Soil losses in the State of Rondônia, Brazil. Ciência Rural, 51(5), e20200460, 2021. doi: 10.1590/0103-8478cr20200460
Mannigel, A. R., Carvalho, M. P., Moreti, D., & Medeiros, L. R. (2002). Fator erodibilidade e tolerância de perda dos solos do Estado de São Paulo. Acta Scientiarum, 24(5), 1335-1340. doi: 10.4025/actasciagron. v24i0.2374
Mapbiomas Project (2020). Coleção 5 da série anual de mapas de cobertura e uso de solo do Brasil. Recuperado de https://mapbiomas.org/
Marcuzzo, F. F. N. (2020). Bacia hidrográfica do Rio Tietê: precipitação pluviométrica especializada. Geographia Meridionalis, 5(3), 243-266. doi: 10.15210/GM.V5I3.16926
Medeiros, G. O. R., Giarolla, A., Sampaio, G., & Marinho, M. A. (2016). Estimates of annual soil loss rates in the state of São Paulo, Brazil. Revista Brasileira de Ciência do Solo, 40, e0150497. doi: 10.1590/180696 57rbcs20150497
Mello, C. R., Viola, M. R., Beskow, S., & Norton, L. D. (2013). Multivariate models for annual rainfall erosivity in Brazil. Geoderma, 203, 88-102. doi: 10.1016/j.geoderma.2013.03.009
Merten, G. H. (2013). A visão norte-americana da conservação do solo e da água. Agroecologia e Desenvolvimento Rural Sustentável, 6(2), 56-66. http://www.emater.tche.br/site/ arquivos_pdf/teses/Rev-Agroeco_2013_Art-Merten.pdf
Miranda, E. E. (2005). Brasil em relevo. EMBRAPA Monitoramento por Satélite. Recuperado de http://www. relevobr.cnpm.embrapa.br
Mitasova, H., Mitas, L., Brown, W. M., & Johnston, D. M. (1999). Terrain modeling and soil erosion simulations for fort hood and fort Polk test areas. Geographic Modeling and Systems Laboratory, University of Illinois. http://fatra.cnr.ncsu.edu/~hmitaso/gmslab/reports/cerl99/rep99. html
Nachtigall, S. D., Nunes, M. C. M., Moura-Bueno, J. M., Lima, C. L. R., Miguel, P., Beskow, S., & Silva, T. P. (2020). Modelagem espacial da erosão hídrica do solo associada à sazonalidade agroclimática na região sul do Rio Grande do Sul, Brasil. Engenharia Sanitaria e Ambiental, 25(6), 933-946. doi: 10.1590/S1413-4152202020190136
Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, J. P., Renschler, C. S., Souchère, V., & Van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61(3), 131-154. doi: 10.1016/j. catena. 2005.03.007
Nóbrega, H. M. (1978). História do rio Tietê. Governo do Estado de São Paulo.
Ouyang, W., Skidmore, A. K., Hao, F., & Wang, T. (2010). Soil erosion dynamics response to landscape pattern. Science of the Total Environment, 408(6), 1358-1366. doi: 10.1016/j.scitotenv.2009.10.062
Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38-50. doi: 10.1016/j. landusepol.2015.05.021
Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., & Bosello, F. (2018). Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development, 29(3), 471-484. doi: 10.1002/ldr.2879
Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo information technology. Geoscience Frontiers, 3(2), 209-215. doi: 10.1016/j.gsf.2011.11.003
Renard, K. G., Foster, G. R., Weesier, G. A., Mccool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Department of Agriculture.
Rossi, M. (2017). Mapa pedológico do Estado de São Paulo: revisado e ampliado. Instituto Florestal.
Santos, F. M., Oliveira, R. P., & Mauad, F. F. (2020). Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê river basin, São Paulo, Brazil. Journal of Hydrology: Regional Studies, 29, 100685. doi: 10.1016/j.ejrh.2020.100685
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos (5a ed. rev. ampl.). EMBRAPA.
São Paulo (2008). Resolução SMA Nº 88, de 19 de dezembro de 2008. Secretaria Estadual de Meio Ambiente. Diário Oficial do Estado de São Paulo, São Paulo. https://www.infraestruturameio ambiente.sp.gov.br/ legislacao/2008/12/resolucao-sma-88-2008/
Seabra, O. C. L. (2018). Bacia do Alto Tietê: a montagem do sistema hidrelétrico de São Paulo e sua problemática. Boletim Paulista de Geografia, 100, 56-84. https://publicacoes.agb.org.br/index.php/ boletim-paulista/article/view/1499
Silva, A. M., & Alvares, C. A. (2005). Levantamento de informações e estruturação de um banco de dados sobre a erodibilidade de classes de solos no Estado de São Paulo. Geociências, 24(1), 33-42. http://www. ppegeo.igc.usp.br/index.php/GEOSP/article/view/9738
Silva, F. G. B., Minotti, R. T., Lombardi, F., Neto, Primavesi, O., & Crestana, S. (2010). Previsão da perda de solo na Fazenda Canchim - SP (EMBRAPA) utilizando geoprocessamento e o USLE 2D. Engenharia Sanitaria e Ambiental, 15(2), 141-148. doi: 10.1590/S1413-4152201000020000
SOS Mata Atlântica (2020). Observando o Tietê 2020: o retrato da qualidade da água e a evolução dos indicadores de impacto do Projeto Tietê. SOS Mata Atlântica.
Vanoni, V. A. (1975). Sediment deposition engineering. American Society of Civil Engineers.
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to conservation planning. Supersedes Agriculture Handbook. United States Department of Agriculture.
Zanirato, S. H. (2011). História da ocupação e das intervenções na várzea do Rio Tietê. Revista Crítica Histórica, 2(4), 117-129. doi: 10.28998/rchvl2n04.2011.0007
Zerihun, M., Mohammedyasin, M. S., Sewnet, D., Adem, A. A., & Lakew, M. (2018). Assessment of soil erosion using RUSLE, GIS and remote sensing in NW Ethiopia. Geoderma Regional, 12, 83-90. doi: 10. 1016/j.geodrs.2018.01.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Semina: Ciências Agrárias
![Creative Commons License](http://i.creativecommons.org/l/by-nc/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.