Fatty acid profile of duodenal digesta and of meat of feedlot beef cattle fed diets containing different levels of concentrate
DOI:
https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3629Keywords:
Linoleic, Oleic, Polyunsaturated, Saturated, Vaccenic.Abstract
The objective of this study was to evaluate the fatty acid profile of duodenal digesta (experiment I) and of meat of beef cattle (experiment II) fed diets containing different levels of concentrate (220, 400, 590 and 790 g of concentrate/kg of dry matter of the diets). The experiment I was conducted with four Charolais-Nellore steers (460 ± 18.2 kg of BW), with a T-shaped duodenal cannula, using a double 4 × 4 Latin square as an experimental design. In experiment II, 16 crossbred Charolais-Nellore young bulls (192.44 ± 18.2 kg of BW) were randomly distributed in the experimental treatments (220, 400, 590 and 790 g of concentrate/kg of dry matter of the diets). The diets were isonitrogenous (120 g of crude protein/kg of dry matter). The intramuscular fat content was used as a covariant for the statistical analysis of the meat fatty acid profile. The duodenal content of fatty acid C17:0 decreased with increase of concentrate levels, while its content in the meat presented a quadratic variation with the increase of the concentrate levels of the diets, being the lowest values observed for the diet with 400 g of concentrate. The duodenal content of fatty acid C18:1 trans-11 decreased, whereas the content of this fatty acid in the meat increased with the increase of the dietary concentrate levels. The increase in the level of concentrate reduced the content of polyunsaturated fatty acids C18:3 n-3, C20:3 n-6, C20:4 n-6, and C20:5 n-3 EPA in both the duodenal digesta and meat. No difference was observed in the n-6/n-3 fatty acids ratio (mean of 13.96) of the meat between diets. The elevation of the level of concentrate in confinement diets reduces the nutraceutical quality of the meat of Charolais-Nellore young bulls slaughtered at 14-16 months of age due to the reduction of the polyunsaturated fatty acids content important for human health.Downloads
References
BRESSAN, M. C.; ROSSATO, L. V.; RODRIGUES, E. C.; ALVES, S. P.; BESSA, R. J. B.; RAMOS, E. M.; GAMA, L. T. Genotype × environment interactions for fatty acid profiles in Bos indicus and Bos taurus finished on pasture or grain. Journal of Animal Science, Champaign, v. 89, n. 1, p. 221-232, 2011. DOI: 10.2527/jas.2009-2672
CARTA, G.; MURRU, E.; BANNI, S.; MANCA, C. Palmitic acid: physiological role, metabolism and nutritional implications. Frontiers in Physiology, Lausanne v. 8, n. 902, p. 1-14, 2017. DOI: 10.3389/fphys.2017.00902
DALEY, C.; ABBOTT, A.; DOYLE, P. S.; NADER, G. A.; LARSON, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal, Newcastle, v. 10, n. 9, p. 1-12, 2010. DOI: 10.1186/1475-2891-9-10
DUCKETT, S. K.; WAGNER, D. G.; YATES, L. D.; DOLEZAL, H. G.; MAY, S. G. Effects of time on feed on beef nutrient composition. Journal of Animal Science, Champaign, v. 71, n. 8, p. 2079-2088, 1993. DOI: 10.2527/1993.7182079x
FOLCH, J.; LEES, M.; SLOANE STANLEY, G. H. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, Rockville, v. 226, n. 1, p. 497-509, 1957.
GLASSER, F.; SCHMIDELY, P.; SAUVANT, D.; DOREAU, M. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors: 2. C18 fatty acids. Animal, London, v. 2, n. 5, p. 691-704, 2008. DOI: 10.1017/S1751731108002036
HARTMAN, L.; LAGO, R. C. A. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice, London, v. 22, n. 6, p. 475-476, 1973.
ITO, R. H.; PRADO, I. N.; ROTTA, P. P.; OLIVEIRA, M. G.; PRADO, R. M.; MOLETTA, J. L. Carcass characteristics, chemical composition and fatty acid profile of longissimus muscle of young bulls from four genetic groups finished in feedlot. Revista Brasileira de Zootecnia, Viçosa, MG, v. 41, n. 2, p. 384-391, 2012. DOI: 10.1590/S1516-35982012000200022
JEKINS, B.; JAMES, A.; KOULMAN, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules, Basel, v. 20, n. 2, p. 2425-2444, 2015. DOI: 10.3390/molecules20022425
KOOHMARAIE, M.; WHEELER, T. L.; SHOCKELFORD, S. D. Sampling, cooking and coring effects on Warner-Bratzler shear force values in beef. Journal of Animal Science, Champaign, v. 74, n. 7, p. 553-1562, 1996. DOI: 10.2527/1996.7471553x
KREHBIEL, C. R.; CRANSTON, J. J.; McCURDY, M. P. An upper limit for caloric density of finishing diets. Journal of Animal Science, v. 84, p. 34-49, 2006. Supplement Special. DOI: 2006.8413_supplE34x
KUCUK, O.; HESS, B. W.; LUDDEN, P. A.; RULE, D. C. Effect of forage: concentrate ratio on ruminal digestion and duodenal flow of fatty acids in ewes. Journal of Animal Science, Champaign, v. 79, n. 8, p. 2233-2240, 2001. DOI: 10.2527/2001.7982233x
LITTELL, R. C.; MILLIKEN, G. A.; STROUP, W. W.; WOLFINGER, R. D.; SCHABENBERGER, O. SAS® for mixed models. 2ht ed. Cary: SAS Institute Inc., 2006. 814 p.
LOFTEN, J. R.; LINN, J. G.; DRACKLEY, J. K.; JENKINS, T. C.; SODERHOL, C. G.; KERTZ, A. F. Invited review: palmitic and stearic acid metabolism in lactating dairy cows. Journal of Dairy Science, Champaign, v. 97, n. 8, p. 1-14, 2014. DOI: 10.3168/jds.2014-7919
LOOR, J. J.; UEDA, K.; FERLAY, A.; CHILLIARD, Y.; DOREAU, M. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows. Journal of Dairy Science, Champaign, v. 87, n. 8, p. 2472-2485, 2004. DOI: 10.3168/jds.S0022-0302(04)73372-X
MARTIN, G. S.; LUNT, D. K.; BRITAIN, K. G.; SMITH, S. B. Postnatal development of stearoyl coenzyme A desaturase gene expression and adiposity in bovine subcutaneous adipose tissue. Journal of Animal Science, Champaign, v. 77, n. 3, p. 630-636, 1999. DOI: 10.2527/1999.773630x
MINICH, D.; VONK, R. J.; VERKADE, H. J. Intestinal absorption of essential fatty acids under physiological and essential fatty acid-deficient conditions. The Journal of Lipid Research, Rockville, v. 38, n. 9, p. 1709-1721, 1997.
MISSIO, R. L.; RESTLE, J.; FREITAS, A. K.; LAGE, M. E.; PACHECO, P. S.; BILEG, U. O.; PADUA, J. T. Age castration of Nellore males on the profile of fatty acids of meat. Semina: Ciências Agrárias, Londrina, v. 38, n. 6, p. 3739-3748, 2017. DOI: 10.5433/1679-0359.2017v38n6p3739
PEDREIRA, M. S.; OLIVEIRA, S. G.; PRIMAVESI, O.; LIMA, M. A.; FRIGHETTO, R. T. S.; BERCHIELLI, T. T. Methane emissions and estimates of ruminal fermentation parameters in beef cattle fed different dietary concentrate levels. Revista Brasileira de Zootecnia, Viçosa, MG, v. 42, n. 8, p. 592-598, 2013. DOI: 10.1590/S1516-35982013000800009
RESTLE, J.; MISSIO, R. L.; RESENDE, P. L. P.; SILVA, N. L. Q.; VAZ, V. N.; BRONDANI, I. L.; ALVES FILHO, D. C.; KUSS, F. Silagem de híbridos de sorgo associado a percentagens de concentrado no desempenho de novilhos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, Belo Horizonte, v. 64, n. 5, p. 1239-1245, 2012. DOI: 10.1590/S0102-09352012000500023
SIMOPOULOS, A. P. The omega-6/omega-3 fatty acid ratio: health implications. Oilseeds and fats Crops and Lipids, Paris, v. 17, n. 5, p. 267-275, 2010. DOI: 10.1051/ocl.2010.0325
SMITH, S. B.; GILL, C. A.; LUNT, D. K.; BROOKS, M. A. Regulation of fat and fatty acid composition in beef cattle. Asian-Australasian Journal of Animal Sciences, Seoul, v. 22, n. 9, p. 1225-1233, 2009. DOI: 10.5713/ajas.2009.r.10
VAHMANI, P.; MAPIYE, C.; PRIETO, N.; ROLLAND, D. C.; MCALLISTER, T. A.; AALHUS, J. L.; DUGAN, M. E. R. The scope for manipulating the polyunsaturated fatty acid content of beef: a review. Journal of Animal Science and Biotechnology, London, v. 6, n. 1, p. 2-13, 2015. DOI: 10.1186/s40104-015-0026-z
VLAEMINCK, B.; FIEVEZ, V.; CABRITA, A. R. J.; FONSECA, A. J. M.; DEWHURST, R. J. Factors affecting odd- and branched-chain fatty acids in milk: a review. Animal Feed Science and Technology, New York, v. 131, n. 3, p. 389-417, 2006. DOI: 10.1016/j.anifeedsci.2006.06.017
XUE, S.; HE, Z.; LU, J.; TAO, X.; ZHENG, L.; XIE, Y.; XIAO, X.; PENG, R.; LI, H. Effect of growth on fatty acid composition of total intramuscular lipid and phospholipids in Ira rabbits. Korean Journal for Food Science of Animal Resources, Seoul, v. 35, n. 1, p. 10-18, 2015. DOI: 10.5851/kosfa.2015.35.1.10
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.