Efeito do extrato acidificado das folhas de Moringa oleifera como suplemento no meio de cultivo in vitro de folículos pré-antrais ovinos

Autores

  • Valéria da Silva Guimarães Universidade Federal do Vale do São Francisco https://orcid.org/0000-0002-8358-574X
  • Regina Lucia dos Santos Silva Universidade Federal do Vale do São Francisco
  • Ricássio de Souza Barberino Universidade Federal do Vale do São Francisco https://orcid.org/0000-0001-5612-8909
  • Istefani Moreira Mota Universidade Federal do Vale do São Francisco
  • Joisyleide Gonçalves Costa Pinto Universidade Federal do Vale do São Francisco https://orcid.org/0000-0002-2381-8054
  • Maria Lilian Gomes Loiola Torres Universidade Federal do Vale do São Francisco
  • Naiane Darklei do Santos Silva Universidade do Estado da Bahia
  • Mário Adriano Ávila Queiroz Universidade Federal do Vale do São Francisco
  • Maria Helena Tavares de Matos Universidade Federal do Vale do São Francisco https://orcid.org/0000-0001-6215-5292
  • Alane Pains Oliveira do Monte Universidade Federal do Vale do São Francisco https://orcid.org/0000-0001-9945-4552

DOI:

https://doi.org/10.5433/1679-0359.2023v44n6p1991

Palavras-chave:

Composto fenólico, Folículo pré-antral, Moringa oleifera, Oócito, Ovino.

Resumo

: Este estudo foi conduzido para avaliar os efeitos do extrato acidificado de folhas de M. oleifera como suplemento ao meio base para cultivo in vitro de folículos secundários isolados de ovinos. Os folículos foram isolados e cultivados por 12 dias em α-MEM+ (suplementado com albumina sérica bovina, insulina, glutamina, hipoxantina, transferrina, selênio e ácido ascórbico) com ou sem 0,1; 0,2 ou 0,4 mg/ml do extrato acidificado de M. oleifera. Foram avaliados morfologia folicular, formação da cavidade antral, diâmetro folicular e oocitário, concentração de glutationa (GSH), atividade mitocondrial e retomada meiótica. Após 12 dias de cultivo, não houve diferença significativa entre os tratamentos em relação à morfologia folicular, formação da cavidade antral, diâmetro e atividade mitocondrial. No entanto, oócitos de folículos cultivados em α-MEM+ apresentaram maior concentração de GSH do que meios contendo extrato de M. oleifera. Além disso, a concentração de 0,4 mg/ml de extrato de M. oleifera aumentou significativamente a porcentagem de oócitos totalmente crescidos (≥ 110 µm) quando comparado aos demais tratamentos. Em conclusão, a concentração de 0,4 mg/ml de extrato de M. oleifera como suplemento do meio de cultura manteve a sobrevivência e aumentou a porcentagem de oócitos totalmente crescidos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Valéria da Silva Guimarães, Universidade Federal do Vale do São Francisco

Aluna de Medicina Veterinária, Universidade Federal do Vale do São Francisco, UNIVASF, Petrolina, PE, Brasil.

Regina Lucia dos Santos Silva, Universidade Federal do Vale do São Francisco

Dra. ,Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Ricássio de Souza Barberino, Universidade Federal do Vale do São Francisco

Dr., Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Istefani Moreira Mota, Universidade Federal do Vale do São Francisco

Aluno de Zootecnia, UNIVASF, Petrolina, PE, Brasil.

Joisyleide Gonçalves Costa Pinto, Universidade Federal do Vale do São Francisco

Mestranda, Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Maria Lilian Gomes Loiola Torres, Universidade Federal do Vale do São Francisco

Mestranda do Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Naiane Darklei do Santos Silva, Universidade do Estado da Bahia

Profa. Dra., Engenharia de Bioprocessos e Biotecnologia, Universidade do Estado da Bahia, UNEB, Juazeiro, BA, Brasil.

Mário Adriano Ávila Queiroz, Universidade Federal do Vale do São Francisco

Prof. Dr., Departamento de Medicina Veterinária, UNIVASF, Petrolina, PE, Brasil.

Maria Helena Tavares de Matos, Universidade Federal do Vale do São Francisco

Profa. Dra., Department of Veterinary Medicine, UNIVASF, Petrolina, PE, Brazil.

Alane Pains Oliveira do Monte, Universidade Federal do Vale do São Francisco

Dra.,  Programa de Pós-Graduação em Rede Nordeste de Biotecnologia, Universidade Federal Rural de Pernambuco, UFRPE, Petrolina, PE, Brasil.

Referências

Ajagun‐Ogunleye, M. O., & Ebuehi, O. A. T. (2020). Evaluation of the anti‐aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. Journal of Food Biochemistry, 44(11), e13426. doi: 10.1111/jfbc.13426 DOI: https://doi.org/10.1111/jfbc.13426

Almansa-Ordonez, A., Bellido, R., Vassena, R., Barragan, M., & Zambelli, F. (2020). Oxidative stress in reproduction: a mitochondrial perspective. Biology, 9(269) 1-22. doi: 10.3390/biology9090269 DOI: https://doi.org/10.3390/biology9090269

Amelia, D., Santoso, B., Purwanto, B., Miftahussurur, M., & Joewono, H. T. (2018). Effects of Moringa oleifera on insulin levels and folliculogenesis in polycystic ovary syndrome model with insulin resistance. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Immunology, Endocrine and Metabolic Agents), 18(1), 22-30. doi: 10.2174/1871522218666180426100754 DOI: https://doi.org/10.2174/1871522218666180426100754

Araújo, V. R., Chaves, R. N., Duarte, A. B. G., Hollanda Celestino, J. J. de, Silva, G. M. da, Fernandes, D. D., & Figueiredo, J. R. de. (2011). Effect of culture medium replacement protocol on the in vitro development of isolated caprine secondary follicles. Small Ruminant Research, 95(2-3), 139-143. doi: 10.1016/j.smallrumres.2010.09.014 DOI: https://doi.org/10.1016/j.smallrumres.2010.09.014

Asgari-Kafrani, A., Fazilati, M., & Nazem, H. (2020). Hepatoprotective and antioxidant activity of aerial parts of Moringa oleifera in prevention of non-alcoholic fatty liver disease in Wistar rats. South African Journal of Botany, 129 (1), 82-90. doi: 10.1016/j.sajb.2019.01.014 DOI: https://doi.org/10.1016/j.sajb.2019.01.014

Barakat, I. A. H., Khalil, W. K. B., & Al-Himaidi, A. R. (2015). Moringa oleífera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Ruminant Research, 130(1), 67-75. doi: 10.1016/j.smallrumres.2015.06.011 DOI: https://doi.org/10.1016/j.smallrumres.2015.06.011

Bergamo, L. Z., Bonato, D. V., Bizarro-Silva, C., Bonato, F. G. C., Sanches, T. K., Cerezetti, M. B., Rossaneis, A. C., Verri, W. A., Morotti, F., & Seneda, M. M. (2021). Follicular development, morphological integrity, and oxidative stress in bovine preantral follicles cultured in vitro with ascorbic acid. Zygote, 1(3), 1-7. doi: 10.1017/S0967199421000903 DOI: https://doi.org/10.1017/S0967199421000903

Bogapathi, S. K., Shetty, R. H. S., Sumanta, N., & Venkataswamy, G. K. (2021). Effect of the Murraya koenigii and Moringa oleifera leaf extracts on the ovarian follicular population and other organ weights in rats (Rattus norvegicus). Indian Journal of Veterinary Sciences and Biotechnology, 17(3), 23-26. doi: 10.21887/ijvsbt.17.3.5

Cadenas, J., Maside, C., Ferreira, A. C. A., Vieira, L. A., Leiva-Revilla, J., Paes, V. M., Alves, B. G., Brandão, F. Z., Rodrigues, A. P. R., Wheeler, M. B., & Figueiredo, J. R. (2018). Relationship between follicular dynamics and oocyte maturation during in vitro culture as a non-invasive sign of caprine oocyte meiotic competence. Theriogenology, 107(1), 95-103. doi: 10.1016/j.theriogenology.2017.10.038 DOI: https://doi.org/10.1016/j.theriogenology.2017.10.038

Carvalho, F. A. L. de, Munekata, P. E. S., Lopes de Oliveira, A., Pateiro, M., Domínguez, R., Trindade, M. A., & Lorenzo, J. M. (2020a). Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Research International, 136(1), 109487. doi: 10.1016/j.foodres.2020.109487 DOI: https://doi.org/10.1016/j.foodres.2020.109487

Carvalho, K. F., Machado, T. S., Garcia, B. M., Zangirolamo, A. F., Macabelli, C. H., Sugiyama, F. H. C., Grejo, M. P., Augusto, J. D., Neto, Tostes, K., Ribeiro, F. K. S., Sarapião, F. D., Pandey, A. K., Nociti, R. P., Tizioto, P., Coutinho, L. L., Meirelles, F. V., Guimarães, F. E. G., Pernas, L., Seneda, M. M., & Chiaratti, M. R. (2020b). Mitofusin 1 is required for oocyte growth and communication with follicular somatic cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(6), 76447660. doi: 10.1096/fj.201901761R DOI: https://doi.org/10.1096/fj.201901761R

Cavalcante, A. Y. P., Lins, T. L. B. G., Santos, J. M. S., Barros, V. R. P., Monte, A. P. O., Barberino, R. S., & Matos, M. H. T. (2018). Supplemented Morus nigra extract‐based medium associated with FSH enables the survival and growth of isolated ovine secondary ovarian follicles. Reproduction in Domestic Animals, 53(2), 423-432. doi: 10.1111/rda.13122. DOI: https://doi.org/10.1111/rda.13122

Cavilla, J. L., Kennedy, C. R., Byskov, A. G., & Hartshorne, G. M. (2008). Human immature oocytes grow during culture for IVM. Human Reproduction, 23(1), 37-45. doi: 10.1093/humrep/dem178 DOI: https://doi.org/10.1093/humrep/dem178

Cerezetti, M. B., González, S. M., Ferraz, C. R., Verri, W. A., Jr., Rabelo, E. A., Seneda, M. M., & Morotti, F. (2021). Impact of the antioxidant quercetin on morphological integrity and follicular development in the in vitro culture of Bos indicus female ovarian fragments. In Vitro Cellular & Developmental Biology, 57 (1), 856-864. doi: 10.1007/s11626-021-00629-8 DOI: https://doi.org/10.1007/s11626-021-00629-8

Crozet, N., Dahirel, M., & Gall, L. (2000). Meiotic competence of in vitro grown goat oocytes. Journal of Reproduction and Fertility, 118(2), 367-374. doi: 10.1530/jrf.0.1180367 DOI: https://doi.org/10.1530/jrf.0.1180367

Davoodian, N., Kadivar, A., Ahmadi, E., Nazari, H., & Mehrban, H. (2021). Quercetin effect on the efficiency of ovine oocyte vitrification at GV stage. Theriogenology, 174(1), 53-59. doi: 10.1016/jtheriogeno-logy. 2021.07.027 DOI: https://doi.org/10.1016/j.theriogenology.2021.07.027

Ding, Y., Shi, Y., & Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13(4), 544-564. doi: 10.1016/j.molp.2020.02.004 DOI: https://doi.org/10.1016/j.molp.2020.02.004

Fahey, J. W. (2017). Moringa oleifera. A review of the medicinal potential. Acta Horticulturae, 1158, 209-224. doi: 10.17660/ActaHortic.2017.1158.25 DOI: https://doi.org/10.17660/ActaHortic.2017.1158.25

González-Burgos, E., Ureña-Vacas, I., Sánchez, M., & Gómez-Serranillos, M. P. (2021). Nutritional value of Moringa Oleifera Lam. leaf powder extracts and their neuroprotective effects via antioxidative and mitochondrial regulation. Nutrients, 13(7), 2203-2216. doi: 10.3390/nu13072203 DOI: https://doi.org/10.3390/nu13072203

Gouveia, B. B., Macedo, T. J. S., Santos, J. M. S., Barberino, R. S., Menezes, V. G., Müller, M. C., & Matos, M. H. T. (2016). Supplemented base medium containing Amburana cearensis associated with FSH improves in vitro development of isolated goat preantral follicles. Theriogenology, 86(5), 1275-1284. doi: 10.1016/j.theriogenology.2016.04.068 DOI: https://doi.org/10.1016/j.theriogenology.2016.04.068

Huang, W., Nagano, M., Kang, S. S., Yanagawa, Y., & Takahashi, Y. (2014). Prematurational culture with 3-isobutyl-1-methylxanthine synchronizes meiotic progression of the germinal vesicle stage and improves nuclear maturation and embryonic development in in vitro-grown bovine oocytes. Journal of Reproduction and Development, 60(1), 9-13.doi:10.1262/jrd.2013-082 DOI: https://doi.org/10.1262/jrd.2013-082

Khadrawy, O., Gebremedhn, S., Salilew-Wondim, D., Taqi, M.O., Neuhoff, C., Tholen, E., Hoelker, M., Schellander, K., Tesfaye, D. (2019). Modulação endógena e exógena da resposta ao estresse oxidativo mediada por Nrf2 em células da granulosa bovina: implicação potencial para a função ovariana. International Journal of Molecular Sciences, 20(7), 1635. doi: 10.3390/ijms20071635. DOI: https://doi.org/10.3390/ijms20071635

Kona, S. S. R., Kumar, A. S., Punyakumari, B., Kumar, R. S., & Rao, V. H. (2021). Influence of TCM 199B, α-MEM, Waymouth MB 752/1 culture media, VEGF, Estradiol-17β, GDF-9 and FGF on in vitro development of preantral follicles in sheep. Veterinary and Animal Science, 13(1), 100189-100194. doi: 10.1016/j.vas.2021.100189 DOI: https://doi.org/10.1016/j.vas.2021.100189

Lakshmidevamma, T. N., Ugalat, J., Apoorva, K. A., Suresh, S. P., Doddamani, M., Kadam, S., & Fakrudin, B. (2021). Genetic diversity of Moringa (Moringa Oleifera Lam). The Moringa Genome, 1(1), 57-65. doi: 10.1007/978-3-030-80956-0_7 DOI: https://doi.org/10.1007/978-3-030-80956-0_7

Lievre, V., Becuwe, P., Bianchi, A., Bossenmeyer-Pourie, C., Koziel, V., Franco, P., Nicolas, M.B., Dauça, M., Vert, P., & Daval, J. L. (2001). Intracellular generation of free radicals and modifications of detoxifying enzymes in cultured neurons from the developing rat forebrain in response to transient hypoxia. Neuroscience, 105(2), 287-297. doi: 10.1016/S0306-4522(01)00189-0 DOI: https://doi.org/10.1016/S0306-4522(01)00189-0

Lins, T. L. B. G., Barberino, R. S., Monte, A. P. O., Pinto, J. G. C., Campinho, D. S. P., Palheta, R. C., Jr., Matos, M. H. T. (2021). Rutin promotes activation and reduces apoptosis of primordial follicles by regulating Akt phosphorylation after in vitro culture of ovine ovarian tissue. Theriogenology, 173, 64-72. doi: 10.1016/j.theriogenology.2021.07.018 DOI: https://doi.org/10.1016/j.theriogenology.2021.07.018

Lins, T. L. B. G., Cavalcante, A. Y. P., Santos, J. M. S., Menezes, V. G., Barros, V. R. P., Barberino, R. S., Bezerra, M.E.S., Macedo, T.J.S., Matos, M. H. T. (2017). Rutin can replace the use of three other antioxidants in the culture medium, maintaining the viability of sheep isolated secondary follicles. Theriogenology, 89(1), 263-270. doi: 10.1016/j.theriogenology.2016.11.019 DOI: https://doi.org/10.1016/j.theriogenology.2016.11.019

Luqman, S., Srivastava, S., Kumar, R., Maurya, A. K., & Chanda, D. (2012). Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evidence-based Complementary and Alternative Medicine, 2012(1), 51. doi: 10.1155/2012/519084 DOI: https://doi.org/10.1155/2012/519084

Macedo, T. J. S., Santos, J. M. S., Bezerra, M. É. S., Menezes, V. G., Gouveia, B. B., Barbosa, L. M. R., Lins, T. L. B. G., Monte, A. P. O., Barberino, R. S., Batista, A.M., Barros, V.R.P., Wischral, A., Queiroz, M. A. A., Araújo, G. G. L., & Matos, M .H. T. (2019). Immunolocalization of leptin and its receptor in the sheep ovary and in vitro effect of leptin on follicular development and oocyte maturation. Molecular and Cellular Endocrinology, 495(15), 110506-11513. doi: 10.1016/j.mce.2019.110506 DOI: https://doi.org/10.1016/j.mce.2019.110506

Martono, Y., Yanuarsih, F. F., Aminu, N. R., & Muninggar, J. (2019). Fractionation and determination of phenolic and flavonoid compound from Moringa oleifera leaves. Journal of Physics: Conference Series, 1307(1), 12014-12021. doi: 10.1088/1742-6596/1307/1/012014 DOI: https://doi.org/10.1088/1742-6596/1307/1/012014

Mbemya, G. T., Cadenas, J., Ribeiro de Sá, N. A., Damasceno Guerreiro, D., Donfack, N. J., Alberto Vieira, L., & Rodrigues, A. P. R. (2018). Supplementation of in vitro culture medium with FSH to grow follicles and mature oocytes can be replaced by extracts of Justicia insularis. PloS One, 13(12), 1-21. doi: 10.1371/journal.pone.0208760 DOI: https://doi.org/10.1371/journal.pone.0208760

Menezes, V. G. S., Barberino, R. S., Gouveia, B. B., Gonçalves, R. J., Almeida, J. R. G. S., & Matos, M. H. T. (2017). Extract of Amburana cearensis maintains the survival of ovine preantral follicles during long-term ovarian tissue transport and promotes primordial follicle activation after in vitro culture. Semina: Ciências Agrárias, 39(5), 2001-2016. doi: 10.5433/1679-0359.2018v39n5p2001 DOI: https://doi.org/10.5433/1679-0359.2018v39n5p2001

Mosharov, E., Cranford, M. R., & Banerjee, R. (2000). The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 39(42), 13005-13011. doi: 10.1021/bi001088w DOI: https://doi.org/10.1021/bi001088w

Mukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., & Malakar, D. (2014). Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. Journal of Assisted Reproduction and Genetics, 31(1), 229-239. doi: 10.1007/s10815-013-0116-9 DOI: https://doi.org/10.1007/s10815-013-0116-9

Nascimento, T. S., Silva, I. S., Alves, M. C. M., Gouveia, B. B., Barbosa, L. M. R., Macedo, T. J., Santos, J. M. S., Monte, A. P. O., Matos, M. H. T., Padilha, F. F., Lima-Verde, I. B. (2019). Effect of red propolis extract isolated or encapsulated in nanoparticles on the in vitro culture of sheep preantral follicle: impacts on antrum formation, mitochondrial activity and glutathione levels. Reproduction in Domestic Animals, 54(1), 31-38. doi: 10.1111/rda.13347 DOI: https://doi.org/10.1111/rda.13347

Oldoni, T. L. C., Merlin, N., Bicas, T. C., Prasniewsk, A., Carpes, S. T., Ascari, J., & Thomé, G. (2021). Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Research International, 141(1), 110082-110094. doi: 10.1016/j.foodres.2020.110082 DOI: https://doi.org/10.1016/j.foodres.2020.110082

Paulino, L. R., Assis, E. I. de, Azevedo, V. A., Silva, B. R., Cunha, E. V. da, & Silva, J. R. (2022). Why is it so difficult to have competent oocytes from in vitro cultured preantral follicles?. Reproductive Sciences, 29(12), 1-14. doi: 10.1007/s43032-021-00840-8 DOI: https://doi.org/10.1007/s43032-021-00840-8

Piovesana, A., & Noreña, C. P. Z. (2019). Study of acidified aqueous extraction of phenolic compounds from Hibiscus sabdariffa L. calyces. The Open Food Science Journal, 11(1), 25-34. doi: 10.2174/1874256401911010025 DOI: https://doi.org/10.2174/1874256401911010025

Qwele, K., Hugo, A., Oyedemi, S. O., Moyo, B., Masika, P. J., & Muchenje, V. (2013). Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Science, 93(3), 455-462. doi: 10.1016/j.meatsci.2012.11.009 DOI: https://doi.org/10.1016/j.meatsci.2012.11.009

Sá, N. A., Ferreira, A. C., Sousa, F. G., Duarte, A. B., Paes, V. M., Cadenas, J., & Figueiredo, J. R. (2020). First pregnancy after in vitro culture of early antral follicles in goats: positive effects of anethole on follicle development and steroidogenesis. Molecular Reproduction and Development, 87(9), 966-977. doi: 10.1002/mrd.23410 DOI: https://doi.org/10.1002/mrd.23410

Santos, J. M. S., Monte, A. P. O., Lins, T. L. B. G., Barberino, R. S., Menezes, V. G., Gouveia, B. B., & Matos, M. H. T. (2019). Kaempferol can be used as the single antioxidant in the in vitro culture medium, stimulating sheep secondary follicle development through the phosphatidylinositol 3-kinase signaling pathway. Theriogenology, 136(1), 86-94. doi: 10.1016/j.theriogenology.2019.06.036 DOI: https://doi.org/10.1016/j.theriogenology.2019.06.036

Silva, G. A., Araújo, L. B., Silva, L. C., Gouveia, B. B., Barberino, R. S., Lins, T. L. B., Monte, A. P. O., Macedo, J.S., Santos, J. M. S, Menezes, V. G., Silva, R. L. S., &Matos, M. H. T. (2021a). Gallic acid promotes the in vitro development of sheep secondary isolated follicles involving the phosphatidylinositol 3-kinase pathway. Animal Reproduction Science, 230(1), 106767. doi: 10.1016/j.anireprosci.2021.106767 DOI: https://doi.org/10.1016/j.anireprosci.2021.106767

Silva, A. A. A., Silva, M. N. P., Figueiredo, L. B. F., Gonçalves, J. D., Silva, M. J. S., Loiola, M. L. G., Bastos, B. D. M., Oliveira, R. A., Ribeiro, L. G. M., Barberino, R. S., Gouveia, B. B., Monte, A. P. O., Nogueira, D. M., Cordeiro, M. F., Matos, M. H. T., & Lopes, E. S., Jr. (2018). Quercetin influences in vitro maturation, apoptosis and metabolically active mitochondria of goat oocytes. Zygote, 26(6), 465-470. doi: 10.1017/S0967199418000485 DOI: https://doi.org/10.1017/S0967199418000485

Silva, R. F., Lima, L. F., Rocha, R. M. P., Brito, I. R., Silva, G. M., Correia, H. H. V., Rodrigues, G. Q., Ferreira, A. C. A., Nunes-Pinheiro, D. C. S., Moura, A. A. A. N., Silveira, L. B. R., Lo Turco, E. G., Wheeler, M. B., Rodrigues, A. P. R., Campello, C. C., & Figueiredo, J. R. (2021b). In vitro long-term culture of isolated ovine preantral follicles: Influence of ethanol on steroid production, oocyte meiotic resumption, and metabolomic profile. Research in Veterinary Science, 135(1), 432-441. doi: 10.1016/j.rvsc.2020.10.029 DOI: https://doi.org/10.1016/j.rvsc.2020.10.029

Su, B., & Chen, X. (2020). Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Frontiers in Veterinary Science, 7(53), 1-13. doi: 10.3389/fvets.2020.00053 DOI: https://doi.org/10.3389/fvets.2020.00053

Yang, H., Xie, Y., Yang, D., & Ren, D. (2017) A apoptose induzida por estresse oxidativo em células da granulosa envolve JNK, p53 e Puma. Oncotarget, 8(15), 25310-25322. doi: 10.18632/oncotarget.15813 DOI: https://doi.org/10.18632/oncotarget.15813

Downloads

Publicado

2023-12-18

Como Citar

Guimarães, V. da S., Silva, R. L. dos S., Barberino, R. de S., Mota, I. M., Pinto, J. G. C., Torres, M. L. G. L., … Monte, A. P. O. do. (2023). Efeito do extrato acidificado das folhas de Moringa oleifera como suplemento no meio de cultivo in vitro de folículos pré-antrais ovinos. Semina: Ciências Agrárias, 44(6), 1991–2010. https://doi.org/10.5433/1679-0359.2023v44n6p1991

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.