Efeito da rutina sobre a maturação in vitro de oócitos de ovelhas obtidos de folículos pré-antrais cultivados in vitro

Autores

DOI:

https://doi.org/10.5433/1679-0359.2024v45n1p207

Palavras-chave:

Antioxidante, Flavonóide, Glutationa, Retomada de meiose, Apoptose.

Resumo

 

Os objetivos deste estudo foram verificar o efeito da rutina sobre a maturação in vitro (MIV) de oócitos provenientes de folículos secundários de ovelhas cultivados in vitro e analisar o possível envolvimento da via mTOR na MIV, sob influência da rutina. Os folículos secundários foram cultivados por 18 dias em meio α-Mínimo Essencial (α-MEM) suplementado com albumina sérica bovina (BSA), insulina, glutamina, hipoxantina, transferrina, selênio, ácido ascórbico e leptina (meio controle: α-MEM+). Em seguida, os folículos foram avaliados quanto à morfologia, formação do antro e diâmetro folicular e taxa de oócitos totalmente crescidos (≥110 µm). Oócitos totalmente crescidos foram submetidos à MIV em meio de cultivo de tecidos 199 (TCM199) suplementado com soro fetal bovino (FBS), hormônio luteinizante (LH), hormônio folículo estimulante recombinante (rFSH) (meio controle MIV) ou neste meio com 0,1, 1 ou 10 µg.mL-1 de rutina. Ao final da MIV, os oócitos foram avaliados quanto à atividade mitocondrial, concentração de espécies reativas de oxigênio (ERO) e glutationa (GSH), porcentagem de retomada de meiose, fragmentação de DNA e envolvimento da via mTOR. Após 18 dias de cultivo in vitro, 77,5% dos folículos estavam normais e 77,7% tornaram-se folículos antrais, com 380,41 µm de diâmetro. Além disso, 70% dos oócitos que cresceram in vitro atingiram diâmetro ≥110 µm e foram submetidos à MIV. A concentração de 10 µg.mL-1 de rutina aumentou significativamente a porcentagem de oócitos que retomaram a meiose (47,27%) em comparação ao meio controle (30,43%). Houve um aumento significativo nas concentrações de ROS e GSH em oócitos maturados com 0.1 µg.mL-1 de rutina em comparação com os outros tratamentos com rutina (p < 0,05). Além disso, a maturação de oócitos em TCM199+ aumentou (p<0,05) o percentual de fragmentação de DNA (30%) comparado ao tratamento com 10 µg.mL-1 de rutina (0%). Após MIV, ambos os tratamentos maturados na presença ou ausência de rapamicina apresentaram porcentagem semelhante de retomada meiótica (61,76% para TCM199 + 10 µg.mL-1 de rutina e 70,73% para TCM199 +  10 µg.mL-1 de rutina + rapamicina) (p>0,05). Em conclusão, a concentração de 10 µg.mL-1 de rutina aumentou a retomada da meiose e reduziu os danos ao DNA.

Métricas

Carregando Métricas ...

Biografia do Autor

Maria Lilian Gomes Loiola Torres, universidade Federal do Vale do São Francisco

M.e, Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Vale do São Francisco, UNIVASF, Petrolina, PE, Brasil.

Kíscyla Oliveira de Andrade, Universidade Federal do Vale do São Francisco

Aluna do Curso de Doutorado do Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Regina Lucia dos Santos Silva, Universidade Federal do Vale do São Francisco

Dra., Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Alane Pains Oliveira do Monte, Universidade Federal do Vale do São Francisco

Dra., Programa de Pós-Graduação em Rede Nordeste de Biotecnologia, Universidade Federal Rural de Pernambuco, UFRPE, Petrolina, PE, Brasil.

Valéria da Silva Guimarães, Universidade Federal do Vale do São Francisco

Discente do Curso de Graduação em Medicina Veterinária, UNIVASF, Petrolina, PE, Brasil.

Joãozito Liandro Oliveira Junior, Universidade Federal do Vale do São Francisco

Aluno do Curso de Doutorado do Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Luanna Mendes Souza, Universidade Federal do Vale do São Francisco

Mestranda do Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Gabriela Cristina da Silva Santos, Universidade Federal do Vale do São Francisco

Mestranda do Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Anna Thaylla Venceslau França, Universidade Federal do Vale do São Francisco

Mestranda do Programa de Pós-Graduação em Ciências Veterinárias, UNIVASF, Petrolina, PE, Brasil.

Maria Helena Tavares de Matos, Universidade Federal do Vale do São Francisco

Profa. Dra., Departamento de Medicina Veterinária, UNIVASF, Petrolina, PE, Brasil.

Referências

Aguila, L., Treulen, F., Therrien, J., Felmer, R., Valdivia, M., & Smith, L. C. (2020). Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals, 10(12), 2196. doi: 10.3390/ani10122196 DOI: https://doi.org/10.3390/ani10122196

Alcaráz, L. P., Prellwitz, L., Alves, G., Souza-Fabjan, J. M. G., & Dias, A. J. B. (2022). Role of phosphoinositide 3-kinase/ protein kinase B/ phosphatase and tensin homologue (PI3K/AKT/PTEN) pathway inhibitors during in vitro maturation of mammalian oocytes on in vitro embryo production: a systematic review. Theriogenology, 189 (1), 42-52. doi: 10.1016/j.theriogenology.2022.06.009 DOI: https://doi.org/10.1016/j.theriogenology.2022.06.009

Antonino, D. C., Soares, M. M., Melo, J., Jr., Alvarenga, P. B., Mohallem, R. F. F., Rocha, C. D., Vieira, L. A., Souza, A. G., Beletti, M. E., Alves, B. G., Jacomini, J. O., Goulart, L. R., & Alves, A. (2019). Three-dimensional levitation culture improves in-vitro growth of secondary follicles in bovine model. Reproductive BioMedicine Online, 38(3), 300-311. doi: 10.1016/j.rbmo.2018.11.013 DOI: https://doi.org/10.1016/j.rbmo.2018.11.013

Arunakumari, G., Shanmugasundaram, N., & Rao, V. H. (2010). Development of morulae from the oocytes of cultured sheep preantral follicles. Theriogenology, 74(5), 884-894. doi: 10.1016/j.theriogenology.2010.04.013 DOI: https://doi.org/10.1016/j.theriogenology.2010.04.013

Barros, V. R. P., Monte, A. P. O., Lins, T. L. B. G., Santos, J. M., Menezes, V. G., Cavalcante, A. Y. P., Araújo, V. R., Gouveia, B. B., & Matos, M. H. T. (2019). In vitro survival, growth, and maturation of sheep oocytes from secondary follicles cultured in serum-free conditions: impact of a constant or a sequential medium containing recombinant human FSH. Domestic Animal Endocrinology, 67(1), 71-79. doi: 10.1016/j.domaniend.2018.12.003 DOI: https://doi.org/10.1016/j.domaniend.2018.12.003

Bezerra, M. É. S., Monte, A. P. O., Barberino, R. S., Lins, T. L. B. G., Oliveira, J. L., Jr., Santos, J. M. S., Bezerra, D. O., Neves, C. A., Silva, G. C., Carvalho, M. A. M., & Matos, M. H. T. (2019). Conditioned medium of ovine Wharton's jelly-derived mesenchymal stem cells improves growth and reduces ROS generation of isolated secondary follicles after short-term In vitro culture. Theriogenology, 125(1), 56-63. doi: 10.1016/j.theriogenology.2018.10.012 DOI: https://doi.org/10.1016/j.theriogenology.2018.10.012

Cai, W., Zheng, K., Li, Z., Peng, L., Yin, Q., & Zeng, H. (2019). ESI-TOF MS analysis and DNA cleavage activity of rutin-metal complexes in aqueous extracts of medicinal plants. Inorganic Chemistry Frontiers, 6(11), 3184-3195. doi: 10.1039/C9QI00878K DOI: https://doi.org/10.1039/C9QI00878K

Cecconi, S., Barboni, B., Coccia, M., & Mattioli, M. (1999). In vitro development of sheep preantral follicles. Biology of Reproduction, 60(3), 594-601. doi: 10.1095/biolreprod60.3.594 DOI: https://doi.org/10.1095/biolreprod60.3.594

Chaves, R. N., Martins, F. S., Saraiva, M. V. A., Celestino, J. J. H., Lopes, C. A. P., Correia, J. C., Matos, M. H. T., Báo, S. N., Name, K. P. O., Campello, C. C., Silva, J. R. V., & Figueiredo, J. R. (2008). Chilling ovarian fragments during transportation improves viability and growth of goat preantral follicles cultured in vitro. Reproduction, Fertility and Development, 20(5), 640-647. doi: 10.1071/rd07195 DOI: https://doi.org/10.1071/RD07195

Chen, Z., Kang, X., Wang, L., Dong, H., Wang, C., Xiong, Z., Zhao, W., Jia, C., Lin, J., Zhang, W., Yuan, W., Zhong, M., Du, H., & Bai, X. (2015). Rictor/mTORC2 pathway in oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure. Journal of Biological Chemistry, 290(10), 6387-6396. doi: 10.1074/jbc.M114.605261 DOI: https://doi.org/10.1074/jbc.M114.605261

Crozet, N., Ahmed-Ali, M., & Dubos, M. P. (1995). Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. Reproduction, 103(2), 293-298. doi: 10.1530/jrf.0.1030293 DOI: https://doi.org/10.1530/jrf.0.1030293

Crozet, N., Dahirel, M., & Gall, L. (2000). Meiotic competence of in vitro grown goat oocytes. Reproduction, 118(2), 367-373. doi: 10.1530/reprod/118.2.367 DOI: https://doi.org/10.1530/jrf.0.1180367

Davoodian, N., Kadivar, A., Ahmadi, E., Nazari, H., & Mehrban, H. (2021). Quercetin effect on the efficiency of ovine oocyte vitrification at GV stage. Theriogenology, 174(1), 53-59. doi: 10.1016/j.theriogenology.2021.07.027 DOI: https://doi.org/10.1016/j.theriogenology.2021.07.027

Ding, H., Li, Y., Zhao, C., Yang, Y., Xiong, C., Zhang, D., Feng, S., Wu, J., & Wang, X. (2022). Rutin supplementation reduces oxidative stress, inflammation and apoptosis of mammary gland in sheep during the transition period. Frontiers in Veterinary Science, 9(1), 907299. doi: 10.3389/fvets.2022.907299 DOI: https://doi.org/10.3389/fvets.2022.907299

Enogieru, A. B., Haylett, W., Hiss, D. C., Bardien, S., & Ekpo, O. E. (2018). Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxidative Medicine and Cellular Longevity, 17(1), 6241017. doi: 10.1155/2018/6241017 DOI: https://doi.org/10.1155/2018/6241017

Fei, J., Sun, Y., Duan, Y., Xia, J., Yu, S., Ouyang, P., Wang, T., & Zhang, G. (2019). Low concentration of rutin treatment might alleviate the cardiotoxicity effect of pirarubicin on cardiomyocytes via activation of PI3K/AKT/mTOR signaling pathway. Bioscience Reports, 39(6), BSR20190546. doi: 10.1042/BSR20190546 DOI: https://doi.org/10.1042/BSR20190546

Fukaya, M., Sato, Y., Kondo, S., Adachi, S. I., Yoshizawa, F., & Sato, Y. (2021). Quercetin enhances fatty acid β-oxidation by inducing lipophagy in AML12 hepatocytes. Heliyon, 7(6), e07324. doi: 10.1016/j.heliyon.2021.e07324 DOI: https://doi.org/10.1016/j.heliyon.2021.e07324

Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(5), 149-164. doi: 10.1016%2Fj.jsps.2016.04.025 DOI: https://doi.org/10.1016/j.jsps.2016.04.025

Gęgotek, A., Rybałtowska-Kawałko, P., & Skrzydlewska, E. (2017). Rutin as a mediator of lipid metabolism and cellular signaling pathways interactions in fibroblasts altered by UVA and UVB radiation. Oxidative Medicine and Cellular Longevity 2017(4721352), 20. doi: 10.1155/2017/4721352 DOI: https://doi.org/10.1155/2017/4721352

Guo, J., Zhang, T., Guo, Y., Sun, T., Li, H., Zhang, X., Yin, H., Cao, G., Yin, Y., Wang, H., Shi, L., Guo, X., Sha, J., Eppig, J. J., & Su, Y. Q. ( 2018). Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proceedings of the National Academy of Sciences, 115(23), E5326-E5333. doi: 10.1073/pnas.1800352115 DOI: https://doi.org/10.1073/pnas.1800352115

Imani, A., Maleki, N., Bohlouli, S., Kouhsoltani, M., Sharifi, S., & Maleki Dizaj, S. (2021). Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research, 35(5), 2500-2513. doi: 10.1002/ptr.6977 DOI: https://doi.org/10.1002/ptr.6977

Jahan, S., Munir, F., Razak, S., Mehboob, A., Ain, Q. U., Ullah, H., Afsar, T., Shaheen, G., & Almajwal, A. (2016). Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats. Journal of Ovarian Research, 9(1), 1-9. doi: 10.1186/s13048-016-0295-y DOI: https://doi.org/10.1186/s13048-016-0295-y

Kala, M., Shaikh, M. V., & Nivsarkar, M. (2017). Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reproductive Medicine and Biology, 16(1), 28-35. doi: 10.1002/rmb2.12013 DOI: https://doi.org/10.1002/rmb2.12013

Kamalamma, P. (2016). Effect of leptin on in vitro development of ovine preantral ovarian follicles. Theriogenology, 85(2), 224-229. doi: 10.1016/j.theriogenology.2015.09.045 DOI: https://doi.org/10.1016/j.theriogenology.2015.09.045

Kogasaka, Y., Hoshino, Y., Hiradate, Y., Tanemura, K., & Sato, E. (2013). Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Molecular Reproduction and Development, 80(4), 334-348. doi: 10.1002/mrd.22166 DOI: https://doi.org/10.1002/mrd.22166

Kordowitzki, P., Hamdi, M., Derevyanko, A., Rizos, D., & Blasco, M. (2020). The effect of rapamycin on bovine oocyte maturation success and metaphase telomere length maintenance. Aging, 12(8), 7576-7584. doi: 10.18632/aging.103126 DOI: https://doi.org/10.18632/aging.103126

Ledda, S., Bogliolo, L., Leoni, G., & Naitana, S. (1999). Follicular size affects the meiotic competence of in vitro matured prepubertal and adult oocytes in sheep. Reproduction Nutrition Development, 39(4), 503-508. doi: 10.1051/rnd:19990409 DOI: https://doi.org/10.1051/rnd:19990409

Lee, S. E., Sun, S. C., Choi, H. Y., Uhm, S. J., & Kim, N. H. (2012). mTOR is required for asymmetric division through small GTPases in mouse oocytes. Molecular Reproduction and Development, 79(5), 356-366. doi: 10.1002/mrd.22035 DOI: https://doi.org/10.1002/mrd.22035

Li, L., Shi, X., Shi, Y., & Wang, Z. (2021). The signaling pathways involved in ovarian follicle development. Frontiers in Physiology, 12(1), 730196. doi: 10.3389/fphys.2021.730196 DOI: https://doi.org/10.3389/fphys.2021.730196

Li, Y., Qin, L., Ying, L., Dong, H., & Wang, D. (2019). Rutin prevents retinal ganglion cell death and exerts protective effects by regulating transforming growth factor-β2/smad2/3akt/PTEN signaling in experimental rat glaucoma. Tropical Journal of Pharmaceutical Research, 18(5), 985-993. doi: 10.4314/ tjpr.v18i5.11 DOI: https://doi.org/10.4314/tjpr.v18i5.11

Lin, Q., Ying, X., Chen, X.-Y., Zhang, J., Yuan, Y.-L., Zhao, W., & Wei, B. (2018). Upregulation of SIRT1 contributes to the cardioprotective effect of Rutin against myocardial ischemia-reperfusion injury in rats. Journal of Functional Foods, 46(1), 227-236. doi: 10.1016/j.jff.2018.05.007 DOI: https://doi.org/10.1016/j.jff.2018.05.007

Lins, T. L. B. G., Cavalcante, A. Y. P., Santos, J. M. S., Menezes, V. G., Barros, V. R. P., Barberino, R. S., Bezerra, M. É. S., Macedo, T. J. S., & Matos, M. H. T. (2017). Rutin can replace the use of three other antioxidants in the culture medium, maintaining the viability of sheep isolated secondary follicles. Theriogenology, 89(1), 263-270. doi: 10.1016/j.theriogenology.2016.11.019 DOI: https://doi.org/10.1016/j.theriogenology.2016.11.019

Lins, T. L. B. G., Gouveia, B. B., Barberino, R. S., Silva, R. L. S., Monte, A. P. O., Pinto, J. G. C., Campinho, D. S. P., Palheta, R. C., Jr., & Matos, M. H. T. (2020). Rutin prevents cisplatin-induced ovarian damage via antioxidant activity and regulation of PTEN and FOXO3a phosphorylation in mouse model. Reproductive Toxicology, 98(1), 209-217. doi: 10.1016/j.reprotox.2020.10.001 DOI: https://doi.org/10.1016/j.reprotox.2020.10.001

Lins, T. L. B. G., Barberino, R. S., Monte, A. P. O., Pinto, J. G. C., Campinho, D. S. P., Palheta, R. C., Jr., & Matos, M. H. T. (2021). Rutin promotes activation and reduces apoptosis of primordial follicles by regulating Akt phosphorylation after in vitro culture of ovine ovarian tissue. Theriogenology, 173(1), 64-72. doi: 10.1016/j.theriogenology.2021.07.018 DOI: https://doi.org/10.1016/j.theriogenology.2021.07.018

Lv, L., Yao, Y., Zhao, G., & Zhu, G., (2018). Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model. Experimental and Therapeutic Medicine, 15(1), 506-512. doi: 10.3892/etm.2017.5365 DOI: https://doi.org/10.3892/etm.2017.5365

Liu, L., Li, S., Li, H,, Yu, D., Li, C., Li, G., Cao, Y., Feng, C., & Deng, X. (2018). Protein kinase Cδ (PKCδ) involved in the regulation of pAkt1 (Ser473) on the release of mouse oocytes from diplotene arrest. Cell Biochemistry & Function, 36(4), 221-227. doi: 10.1002/cbf. DOI: https://doi.org/10.1002/cbf.3334

Lunardi, F. O., Aguiar, F. L. de, Duarte, A. B., Araújo, V. R., Lima, L. F. de, Ribeiro de Sá, N. A., Vieira Correia, H. H., Domingues, S. F., Campello, C. C., Smitz, J., Figueiredo, J. R. de, & Ribeiro Rodrigues, A. P. (2016). Ovine secondary follicles vitrified out the ovarian tissue grow and develop in vitro better than those vitrified into the ovarian fragments. Theriogenology, 85(7), 1203-1210. doi: 10.1016/j.theriogenology.2015.10.043 DOI: https://doi.org/10.1016/j.theriogenology.2015.10.043

Luz, V. B., Araújo, V. R., Duarte, A. B., Celestino, J. J., Silva, T. F., Magalhães-Padilha, D. M., Chaves, R. N., Brito, I. R., Almeida, A. P., Campello, C. C., Feltrin, C., Bertolini, M., Santos, R. R., & Figueiredo, J. R. (2012). Eight-cell parthenotes originated from in vitro grown sheep preantral follicles. Reproductive Sciences, 19(11), 1219-1225. doi: 10.1177/1933719112446072 DOI: https://doi.org/10.1177/1933719112446072

Macedo, T. J. S., Santos, J. M. S., Bezerra, M. É. S., Menezes, V. G., Gouveia, B. B., Barbosa, L. M. R., Lins, T. L. B. G., Monte, A. P. O., Barberino, R. S., Batista, A. M., Barros, V. R. P., Wischral, A., Queiroz, M. A. A., Araújo, G. G. L., & Matos, M. H. T. (2019). Immunolocalization of leptin and its receptor in the sheep ovary and In vitro effect of leptin on follicular development and oocyte maturation. Molecular and Cellular Endocrinology, 495(15), 110506. doi: 10.1016/j.mce.2019.110506 DOI: https://doi.org/10.1016/j.mce.2019.110506

Macedo. T. J. S., Barros, V. R. P., Monte, A. P. O., Gouveia, B. B., Bezerra, M. É. S., Cavalcante, A. Y. P., Barberino, R. S., Menezes, V. G., & Matos, M. H. T. (2017). Resveratrol has dose-dependent effects on DNA fragmentation and mitochondrial activity of ovine secondary follicles cultured in vitro. Zygote, 25(4), 434-442. doi: 10.1017/S0967199417000193 DOI: https://doi.org/10.1017/S0967199417000193

Magalhães, D. M., Duarte, A. B., Araújo, V. R., Brito, I. R., Soares, T. G., Lima, I. M., Lopes, C. A., Campello, C. C., Rodrigues, A. P., & Figueiredo, J. R. (2011). In vitro production of a caprine embryo from a preantral follicle cultured in media supplemented with growth hormone. Theriogenology, 75(1), 182-188. doi: 10.1016/j.theriogenology.2010.08.004 DOI: https://doi.org/10.1016/j.theriogenology.2010.08.004

Mukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., & Malakar, D. (2014). Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. Journal of Assisted Reproduction and Genetics, 31(1), 229-239. doi: 10.1007/s10815-013-0116-9 DOI: https://doi.org/10.1007/s10815-013-0116-9

Muhammad, A, Waziri, A. D., Forcados, G. E., Sanusi, B., Sani, H., Malami, I., Abubakar, I. B., Oluwatoyin, H. Y., Adinoyi, O. A., & Mohammed, H. A. (2019). Sickling-preventive effects of rutin is associated with modulation of deoxygenated haemoglobin, 2,3-bisphosphoglycerate mutase, redox status and alteration of functional chemistry in sickle erythrocytes. Heliyon, 5(6), e01905. doi: 10.1016/j.heliyon.2019.e01905 DOI: https://doi.org/10.1016/j.heliyon.2019.e01905

Nayki, C., Nayki, U., Keskin Cimen, F., Kulhan, M., Yapca, O. E., Kurt, N., & Bilgin Ozbek, A. (2018). The effect of rutin on ovarian ischemia-reperfusion injury in a rat model. Gynecological Endocrinology, 34(9), 809-814. doi: 10.1080/09513590.2018.1450378 DOI: https://doi.org/10.1080/09513590.2018.1450378

Nunes, S. C., & Serpa, J. (2018). Glutathione in ovarian cancer: a double-edged sword. International Journal of Molecular Sciences, 19(7), 1882. doi: 10.3390%2Fijms19071882 DOI: https://doi.org/10.3390/ijms19071882

Rakha, S. I., Elmetwally, M. A., El-Sheikh Ali, H., Balboula, A., Mahmoud, A. M., & Zaabel, S. M. (2022). Importance of antioxidant supplementation during in vitro maturation of mammalian oocytes. Veterinarian Sciences, 9(8), 439. doi: 10.3390/vetsci9080439 DOI: https://doi.org/10.3390/vetsci9080439

Park, H. J., Heo, G. D., Yang, S. G., & Koo, D. B. (2023). Rapamycin encourages the maintenance of mitochondrial dynamic balance and mitophagy activity for improving developmental competence of blastocysts in porcine embryos in vitro. Molecular Reproduction and Development, 90(4), 236-247. doi: 10.1002/mrd.23681 DOI: https://doi.org/10.1002/mrd.23681

Seo, S., Lee, M. S., Chang, E., Shin, Y., Oh, S., Kim, I. H., & Kim, Y. (2015). Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients, 7(9), 8152-8169. doi: 10.3390/nu7095385 DOI: https://doi.org/10.3390/nu7095385

Silva, A. A. A., Silva, M. N. P., Figueiredo, L. B. F., Gonçalves, J. D., Silva, M. J. S., Loiola, M. L. G., Bastos, B. D. M., Oliveira, R. A., Ribeiro, L. G. M., Barberino, R. S., Gouveia, B. B., Monte, A. P. O., Nogueira, D. M., Cordeiro, M. F., Matos, M. H. T., & Lopes, E. S., Jr. (2018). Quercetin influences in vitro maturation, apoptosis and metabolically active mitochondria of goat oocytes. Zygote, 26(6), 465-470. doi: 10.1017/S0967199418000485 DOI: https://doi.org/10.1017/S0967199418000485

Silva, R. L. S., Barberino, R. S., & Matos, M. H. T. (2023). Impact of antioxidant supplementation during in vitro culture of ovarian preantral follicles: a review. Theriogenology, 207(1), 110-122. doi: 10.1016/j.theriogenology.2023.05.027 DOI: https://doi.org/10.1016/j.theriogenology.2023.05.027

Singh, A., Yashavarddhan, M. H., Kalita, B., Ranjan, R., Bajaj, S., Prakash, H., & Gupta, M. L. (2017). Podophyllotoxin and rutin modulates ionizing radiation-induced oxidative stress and apoptotic cell death in mice bone marrow and spleen. Frontiers in Immunology, 8(37), 183-198, doi: 10.3389/fimmu.2017.00183 DOI: https://doi.org/10.3389/fimmu.2017.00183

Singh, S., Singh, D. K., Meena, A., Dubey, V., Masood, N., & Luqman, S. (2019). Rutin protects t butyl hydroperoxide-induced oxidative impairment via modulating the Nrf2 and iNOS activity. Phytomedicine, 55(1), 92-104. doi: 10.1016/j.phymed.2018.07.009 DOI: https://doi.org/10.1016/j.phymed.2018.07.009

Tian, T., Li, X., & Zhang, J. (2019). mTOR Signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. International Journal of Molecular Sciences, 20(3), 755-789. doi: 10.3390/ijms20030755 DOI: https://doi.org/10.3390/ijms20030755

Yang, C., Wei, Y., Zhang, Y., Zheng, K., Li, N., & Yan, Y. (2009). Expression and function of mammalian target of rapamycin (mTOR) in mouse oocyte maturation[J]. Advances in Biochemistry and Biophysics, 36(10), 1334-1339. doi:10.3724/SP.J.1206.2009.00446 DOI: https://doi.org/10.3724/SP.J.1206.2009.00446

Yang, H., Wang, C., Zhang, L., Lv, J., & Ni, H. (2019). Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression. Chemico-Biological Interactions, 297(1), 44-49. doi: 10.1016/j.cbi.2018.10.016 DOI: https://doi.org/10.1016/j.cbi.2018.10.016

Yang, Q., Xi, Q., Wang, M., Long, R., Hu, J., Li, Z., Ren, X., Zhu, L., & Jin, L. (2022). Rapamycin improves the quality and developmental competence of mice oocytes by promoting DNA damage repair during in vitro maturation. Reproductive Biology and Endocrinology, 20(1), 67-72. doi: 10.1186/s12958-022-00943-0 DOI: https://doi.org/10.1186/s12958-022-00943-0

Yashavarddhan, M. H., Shukla, S. K., Chaudhary, P., Srivastava, N. N., Joshi, J., Suar, M., & Gupta, M. L. (2017). Targeting DNA repair through podophyllotoxin and rutin formulation in hematopoietic radioprotection: an in silico, in vitro, and in vivo study. Frontiers in Pharmacology, 8(1), 750-767. doi: 10.3389/fphar.2017.00750 DOI: https://doi.org/10.3389/fphar.2017.00750

Downloads

Publicado

2024-02-22

Como Citar

Torres, M. L. G. L., Andrade, K. O. de, Silva, R. L. dos S., Monte, A. P. O. do, Guimarães, V. da S., Oliveira Junior, J. L., Souza, L. M., Santos, G. C. . da S., França, A. T. V., & Matos, M. H. T. de. (2024). Efeito da rutina sobre a maturação in vitro de oócitos de ovelhas obtidos de folículos pré-antrais cultivados in vitro. Semina: Ciências Agrárias, 45(1), 207–226. https://doi.org/10.5433/1679-0359.2024v45n1p207

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)