Efeitos do bagaço de espinheiro marítimo no desempenho de crescimento, metabólitos séricos e índices antioxidantes de suínos em crescimento

Autores

  • Yibo Yan College of Animal Science, Shanxi Agricultural University https://orcid.org/0009-0004-8430-848X
  • Nanxin Liang College of Animal Science, Shanxi Agricultural University
  • Zhaohui Ding College of Animal Science, Shanxi Agricultural University
  • Kai Zhang College of Animal Science, Shanxi Agricultural University
  • Lei Yue College of Animal Science, Shanxi Agricultural University
  • Wenjing Mei College of Animal Science, Shanxi Agricultural University
  • Wengang Li College of Animal Science, Shanxi Agricultural University
  • Xianyi Song College of Animal Science, Shanxi Agricultural University

DOI:

https://doi.org/10.5433/1679-0359.2023v44n5p1777

Palavras-chave:

Bagaço de espinheiro-marítimo, Suínos em crescimento, Desempenho de crescimento, Antioxidantes séricos.

Resumo

Bagaço de espinheiro marítimo (SBP), um resíduo agroindustrial, contendo compostos nutricionais úteis para a produção animal. Este estudo teve como objetivo avaliar o efeito do SBP sobre o desempenho e metabolismo séricos em suínos em crescimento. Um total de 40 suínos mestiços de 70 dias de idade com peso inicial (IBW) de 301,5 kg foram distribuídos aleatoriamente em 4 grupos. Os suínos foram alimentados com suplementação dietética de SBP (0,0%, 0,5, 1,5% e 2,0 %) por 30 dias. Concluiu-se que o nível adequado de 1,5% de suplementação de SBP poderia melhorar o desempenho dos suínos.  Os índices imunológicos e antioxidantes séricos apresentaram melhor desempenho no grupo de suplementação de SBP a 1,5%. Sugerimos que o nível adequado de suplementação de SBP seria de 1,5% para suínos em crescimento, o que poderia melhorar seu desempenho, índices séricos, imunológicos e antioxidantes.

Downloads

Não há dados estatísticos.

Biografia do Autor

Yibo Yan, College of Animal Science, Shanxi Agricultural University

Prof. Dr., College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Nanxin Liang, College of Animal Science, Shanxi Agricultural University

Graduate Student, College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Zhaohui Ding, College of Animal Science, Shanxi Agricultural University

Graduate Student, College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Kai Zhang, College of Animal Science, Shanxi Agricultural University

Prof. Dr., College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Lei Yue, College of Animal Science, Shanxi Agricultural University

Researchers, College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Wenjing Mei, College of Animal Science, Shanxi Agricultural University

Graduate Student, College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Wengang Li, College of Animal Science, Shanxi Agricultural University

Prof., College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Xianyi Song, College of Animal Science, Shanxi Agricultural University

Prof., College of Animal Science, Shanxi Agricultural University, Taiyuan City, Shanxi Province, China.

Referências

Alfaia, C. M., Costa, M. M., Lopes, P. A., Pestana, J. M., & Prates, J. A. M. (2022). Use of grape by-products to enhance meat quality and nutritional value in monogastrics. Foods 11(18), 2754. doi: 10.3390/foods11182754 DOI: https://doi.org/10.3390/foods11182754

Association of Official Analytical Chemists (2006). Official methods of analysis (18nd ed.). AOAC.

Chamorro, S., Viveros, A., Rebolé, A., Rica, B. D., Arija, I., & Brenes, A. (2015). Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Research International, 73, 197-203. doi: 10.1016/j.foodres.2014.11.054 DOI: https://doi.org/10.1016/j.foodres.2014.11.054

Correia, C. S., Alfaia, C. M., Madeira, M. S., Lopes, P. A., Matos, T. J. S., Cunha, L. F., Prates, J. A. M., & Freire, J. P. B. (2017). Dietary inclusion of tomato pomace improves meat oxidative stability of young pigs. Journal of Animal Physiology and Animal Nutrition, 101(6), 1215-1226. doi: 10.1111/jpn.12642 DOI: https://doi.org/10.1111/jpn.12642

Dannenberger, D., Tuchscherer, M., Nürnberg, G., Schmicke, M., & Kanitz, E. (2018). Sea buckthorn pomace supplementation in the diet of growing pigs-effects on fatty acid metabolism, HPA activity and immune status. International Journal of Molecular Sciences, 19(2), 596. doi: 10.3390/ijms19020596 DOI: https://doi.org/10.3390/ijms19020596

Górnaś, P., Šnē, E., Siger, A., & Segliņa, D. (2014). Sea buckthorn (Hippophae rhamnoides L.) leaves as valuable source of lipophilic antioxidants: the effect of harvest time, sex, drying and extraction methods. Industrial Crops and Products, 60,1-7. doi: 10.1016/j.indcrop.2014.05.053 DOI: https://doi.org/10.1016/j.indcrop.2014.05.053

Jones, D., Caballero, S., & Davidov-Pardo, G. (2019). Bioavailability of nanotechnology-based bioactives and nutraceuticals. Advances in Food and Nutrition Research, 88, 235-273. doi: 10.1016/bs.afnr.2019.02.014 DOI: https://doi.org/10.1016/bs.afnr.2019.02.014

Kumanda, C., Mlambo, V., & Mnisi, C. M. (2019). From landfills to the dinner table: red grape pomace waste as a nutraceutical for broiler chickens. Sustainable, 11(7), 1931. doi: 10.3390/su11071931 DOI: https://doi.org/10.3390/su11071931

Larsson, P. H. (2008). Purification of antibodies. Methods in Molecular Medicine, 138, 197-207. doi: 10.1007/978-1-59745-366-016 DOI: https://doi.org/10.1007/978-1-59745-366-0_16

Lee, H. H. L., Lee, C. J., Choi, S. Y., Kim, Y., & Hur, J. (2021). Inhibitory effect of sea buckthorn extracts on advanced glycation endproduct formation. Food Chemistry, 373, 131364. doi: 10.1016/j.foodchem.2021.131364 DOI: https://doi.org/10.1016/j.foodchem.2021.131364

Liu, H., Wu, D. Z. C. R., Degen, A. A., Hao, L. Z., Gan, S. Y., Liu, H. S., Cao, X. L., Long, R. J., & Zhou, J. W. (2022). Differences between yaks and Qaidam cattle in digestibilities of nutrients and ruminal concentration of volatile fatty acids are not dependent on feed level. Fermentation, 8(8), 405. doi: 10.3390/fermentation8080405 DOI: https://doi.org/10.3390/fermentation8080405

Liu, H., Zhou, J. W., Degen, A., Liu, H. S., Cao, X. L., Hao, L. Z., Shang, Z. H., Ran, T., & Long, R. J. (2023). A comparison of average daily gain, dry matter and energy digestibilities, rumen fermentation, and serum metabolites between yaks (Bos grunniens) and cattle (Bos taurus) consuming diets differing in energy levels. Animal Nutriton 12, 77-86. doi: 10.1016/j.aninu.2022.07.015 DOI: https://doi.org/10.1016/j.aninu.2022.07.015

Lyu, X. G., Wang, Y. X., Guo, S. W., Wang, X., Cao, W., & Cespedes-Acuña, L. C. (2022). Sea buckthorn leaf extract on the stability and antioxidant activity of microencapsulated sea buckthorn oil. Food Bioscience, 4, 101818. doi: 10.1016/j.fbio.2022.101818 DOI: https://doi.org/10.1016/j.fbio.2022.101818

Ma, J. S., Chang, W. H., Liu, G. H., Zhang, S., Zheng, A. J., Li, Y., Xie, Q., Liu, Z. Y., & Cai, H. Y. (2015). Effects of flavones of sea buckthorn fruits on growth performance, carcass quality, fat deposition and lipometabolism for broilers. Poultry Science, 94(11), 2641-2649. doi: 10.3382/ps/pev250 DOI: https://doi.org/10.3382/ps/pev250

National Research Council (2012). Nutrient requirements of swine (11nd ed.). National Academies Press.

Olas, B. (2016). Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food and Chemical Toxicology, 97, 199-204. doi: 10.1016/j.fct.2016.09.008 DOI: https://doi.org/10.1016/j.fct.2016.09.008

Pop, I. M., Pascariu, S. M., & Simeanu, D. (2015). The grape pomace influence on the broiler chickens growing rate. Lucr. Universitatea de Științe Agricole și Medicină Veterinară din Cluj-Napoca, 64, 34-39.

Ran, B., Guo, C. E., Li, W., Li, W., Wang, Q., Qian, J., & Li, H. (2021). Sea buckthorn (Hippophae rhamnoides L.) fermentation liquid protects against alcoholic liver disease linked to regulation of liver metabolome and the abundance of gut microbiota. Journal of the Science of Food and Agriculture, 101(7), 2846-2854. doi: 10.1002/jsfa.10915 DOI: https://doi.org/10.1002/jsfa.10915

Ren, Z., Fang, H., Zhang, J., Wang, R., Xiao, W., Zheng, K., Yu, H., & Zhao, Y. (2022). Dietary Aronia melanocarpa pomace supplementation enhances the expression of ZO-1 and occludin and promotes intestinal development in pigs. Frontiers in Veterinary Science, 9, 904667. doi: 10.3389/fvets.2022.904667 DOI: https://doi.org/10.3389/fvets.2022.904667

Saracila, M., Untea, A. E., Panaite, T. D., Varzaru, I., Oancea, A. G., Turcu, R. P., & Vlaicu, P. A. (2022). Effects of supplementing sea buckthorn leaves (Hippophae rhamnoides L.) and chromium (iii) in broiler diet on the nutritional quality and lipid oxidative stability of meat. Antioxidants, 11(11), 2220. doi: 10.3390/antiox11112220 DOI: https://doi.org/10.3390/antiox11112220

Schomaker, S., Potter, D., Warner, R., Larkindale, J., King, N., Porter, A. C., Owens, J., Tomlinson, L., Sauer, J. M., Johnson, K., & Aubrecht, J. (2020). Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impair-ments. PLos One, 15(5), e0229753.doi: 10.1371/journal.pone.0229753 DOI: https://doi.org/10.1371/journal.pone.0229753

Tamkutė, L., Gil, B. M., Carballido, J. R., Pukalskienė, M., & Venskutonis, P. R. (2019). Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Research International, 120, 38-51. doi: 10.1016/j.foodres.2019.02.025 DOI: https://doi.org/10.1016/j.foodres.2019.02.025

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. doi: 10.3168/jds.s0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wang, K., Xu, Z., & Liao, X. (2022a). Bioactive compounds, health benefits and functional food products of sea buckthorn: a review. Critical Reviews in Food Science and Nutrition, 62(24), 6761-6782. doi: 10.1080/10408398.2021.1905605 DOI: https://doi.org/10.1080/10408398.2021.1905605

Wang, Z., Wang, W., Zhu, C., Gao, X., & Chu, W. (2022b). Evaluation of antioxidative and neuroprotective activities of total flavonoids from sea buckthorn (Hippophae rhamnoides L.). Frontiers in Nutrition, 9, 861097. doi: 10.3389/fnut.2022.861097 DOI: https://doi.org/10.3389/fnut.2022.861097

Yang, K., Qing, Y., Yu, Q., Tang, X., Chen, G., Fang, R., & Liu, H. (2021). By-product feeds: current understanding and future perspectives. Agriculture, 11, 207. doi: 10.3390/agriculture11030207 DOI: https://doi.org/10.3390/agriculture11030207

Zou, S., Sun, C., Li, F., Xie, Y., Liang, T., Yang, Y., Shi, B., Ma, Q., Shi, Z., Chai, S., & Shan, A. (2022). Effect of gardenia pomace supplementation on growth performance, blood metabolites, immune and antioxidant indices, and meat quality in xiangcun pigs. Animals, 12(17), 2280. doi: 10.3390/ani12172280 DOI: https://doi.org/10.3390/ani12172280

Downloads

Publicado

2023-12-11

Como Citar

Yan, Y., Liang, N., Ding, Z., Zhang, K., Yue, L., Mei, W., … Song, X. (2023). Efeitos do bagaço de espinheiro marítimo no desempenho de crescimento, metabólitos séricos e índices antioxidantes de suínos em crescimento. Semina: Ciências Agrárias, 44(5), 1777–1788. https://doi.org/10.5433/1679-0359.2023v44n5p1777

Edição

Seção

Artigos

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.