Distribuição de moscas brancas e interação com endosimbiontes no Estado do Paraná
DOI:
https://doi.org/10.5433/1679-0359.2023v44n5p1661Palavras-chave:
Arsenophonus, Bemisia tabaci, Hamiltonella, Portiera, Rickettsia, Trialeurodes vaporariorum.Resumo
As moscas brancas formam um complexo de espécies crípticas que são geneticamente distintas, mas morfologicamente indistinguíveis umas das outras. Bemisia tabaci e Trialeurodes vaporariorum (Tvap) são as espécies que mais se destacam pelos prejuízos à agricultura. No Brasil, foram descritas três espécies de B. tabaci, New Word (NW), Middle East-Asia Minor (MEAM1) e Mediterranean (MED). Além disso, as moscas brancas apresentam associações simbióticas com bactérias endossimbiontes que podem promover vantagens adaptativas ao inseto. O objetivo deste trabalho foi identificar espécies/biótipos de mosca-branca em municípios do Paraná e suas respectivas interações com bactérias endossimbiontes. Os insetos foram coletados em 14 municípios de regiões edafoclimáticas do Paraná, em cultivos agrícolas ou plantas daninhas. Os insetos e respectivos endossimbiontes foram identificados por meio de análises moleculares baseadas em PCR previamente publicadas. Observou-se que B. tabaci MEAM1, MED, NW e Tvap representaram 39,8%; 27,0%; 6,3% e 23,7% dos espécimes coletados. Os insetos apresentaram interação com Portiera, Arsenophonus, Rickettsia, Hamiltonella e Wolbachia, de forma isolada ou em coinfecção, constatando-se para alguns casos a interação com cinco endossimbiontes em algumas localidades. A incidência de Tvap em campo aberto e de MED, principalmente no Sudeste do estado, onde as temperaturas são mais amenas, além das interações com endossimbiontes que conferem aos insetos vantagens adaptativas configura um alerta fitossanitário para a defesa do Paraná.
Downloads
Referências
Barbosa, L. F. (2014a). Diversidade de Bemisia tabaci na América Latina e detecção de seus endossimbiontes. Tese de doutorado em Agronomia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, SP, Brasil.
Barbosa, L. F., Marubayashi, J. M., Marchi, B. R., Yuki, V. A., Pavan, M. A., Moriones, E., Navas-Castillo, J., & Krause-Sakate, R. (2014b). Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. Pest Management Science, 70(10), 1440-1445. doi: 10.1002/ps.3731 DOI: https://doi.org/10.1002/ps.3731
Barbosa, L. F., Yuki, V. A., Marubayashi, J. M., Marchi, B. R., Perini, F. L., Pavan, M. A., Barros, D. R., Ghanim, M., Moriones, E., Navas-Castillo, J., & Krause-Sakate, R. (2015). First report of Bemisia tabaci Mediterranean (Q biotype) species in Brazil. Pest Management Science, 71(4), 501-504. doi: 10.1002/ps. 3909 DOI: https://doi.org/10.1002/ps.3909
Barro, P. J. de. (1995). Bemisia tabaci biotype B: a review of its biology, distribution and control. CSIRO Division of Entomology.
Barro, P. J. de, Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: a statement of species status. Annual Review of Entomology, 56, 1-19. doi: 10.1146/annurev-ento-112408-085504 DOI: https://doi.org/10.1146/annurev-ento-112408-085504
Barro, P. J. de, Scott, K. D., Graham, G. C., Lange, C. L., & Schutze, M. K. (2003). Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes, 3(1), 40-43. doi: 10.1046/j.1471-8286.2003.00344.x DOI: https://doi.org/10.1046/j.1471-8286.2003.00344.x
Baumann, P., Moran, N. A., & Baumann, L. (2006). Bacteriocyte-associated endosymbionts of insects. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (vol. 1, pp. 403-438). New York. DOI: https://doi.org/10.1007/0-387-30741-9_16
Bello, V. H., Silva, F. B., Watanabe, L. F. M., Vicentin, E., Muller, C., Bueno, R. C. O. F., Santos, J. C., Marchi, B. R., Nogueira, A. M., & Yuki, V. A. (2021). Detection of Bemisia tabaci Mediterranean cryptic species on soybean in São Paulo and Paraná States (Brazil) and interaction of cowpea mild mottle virus with whiteflies. Plant Pathology, 70(6), 1508-1520. doi: 10.1111/ppa.13387 DOI: https://doi.org/10.1111/ppa.13387
Bi, J., & Wang, Y. F. (2020). The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect Science, 27(5), 846-858. doi: 10.1111/1744-7917.12731 DOI: https://doi.org/10.1111/1744-7917.12731
Bing, X. L., Yang, J., Zchori-Fein, E., Wang, X. W., & Liu, S. S. (2013). Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Applied and Environmental Microbiology, 79(2), 569-575. doi: 10.1128/AEM.03030-12 DOI: https://doi.org/10.1128/AEM.03030-12
Bourtzis, K., & Miller, T. A. (2006). Insect symbiosis (vol. 2.). CRC Press. DOI: https://doi.org/10.1201/9781420005936
Buchner, P. (1967). Endosymbiosis of animals with plant microorganisms. Journal of Basic Microbiology, 7(2), 168-168. doi: 10.1002/jobm.19670070219 DOI: https://doi.org/10.1002/jobm.19670070219
Campbell, L. I., Nwezeobi, J., van Brunschot, S. L., Kaweesi, T., Seal, S. E., Swamy, R. A. R., Namuddu, A., Maslen, G. L., Mugerwa, H., Armean, I. M., Haggerty, L., Martin, F. J., Malka, O., Santos-Garcia, D., Juravel, K., Morin, S., Stephens, M. E., Muhindira, P. V., Kersey, P. J. … Colvin, J. (2023). Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics, 24(1), 408. doi: 10.1186/s12864-023-09474-3 DOI: https://doi.org/10.1186/s12864-023-09474-3
Center for Agriculture and Biosciences International (2021). Invasive species compendium. Trialeurodes vaporariorum (greenhouse whitefly). http://www.cabi.org/isc/datasheet/54660
Dalette, H., Baudin, R., Becker, N., Girard, A. L., Ramatoulaye, S. T., Lett, J. M., & Reynaud, B. (2015). Species and endosymbiont diversity of Bemisia tabaci (Homoptera: Aleyrodidae) on vegetable crops in Senegal. Insect Science, 22(3), 386-398. doi: 10.1111/1744-7917.12134 DOI: https://doi.org/10.1111/1744-7917.12134
Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology, 23(1), 38-47. doi: 10.1111/j.1365-2435.2008.01442.x DOI: https://doi.org/10.1111/j.1365-2435.2008.01442.x
Eggenkamp-Rotteveel Mansfeld, M. H., van Lenteren, J. C., Ellenbroek, J. M., & Woets, J. (1982). The parasite-host relationship between Encarsia formosa (Hym., Aphelinidae) and Trialeurodes vaporariorum (Hom., Aleyrodidae). XII. Population dynamics of parasite and host in a large, commercial glasshouse and test of the parasite-introduction method used in the Netherlands. Zeitschrift für Angewandte Entomologie, 93(1-5), 113-130. doi: 10.1111/j.1439-0418.1982.tb03577.x DOI: https://doi.org/10.1111/j.1439-0418.1982.tb03577.x
Everett, E., Karin, D., Thao, M., Horn, M., Dyszynski, G. E., & Baumann, P. (2005). Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1581-1587. doi: 10.1099/ijs.0.63454-0 DOI: https://doi.org/10.1099/ijs.0.63454-0
Fan, Z. Y., Liu, Y., He, Z. Q., Wen, Q., Chen, X. Y., Khan, M. M., Osman, M., Mandour, N. S., & Qiu, B. L. (2022). Rickettsia infection benefits its whitefly hosts by manipulating their nutrition and defense. Insects, 13(12), 1161. doi: 10.3390/insects13121161 DOI: https://doi.org/10.3390/insects13121161
Frohlich, D. R., Torres-Jerez, I. I., Bedford, I. D., Markham, P. G., & Brown, J. K. (1999). A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology, 8(10), 1683-1691. doi: 10.1046/j.1365-294x.1999.00754.x DOI: https://doi.org/10.1046/j.1365-294x.1999.00754.x
Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology, 2(1), 67-93. doi: 10.1146/annurev-virology-031413-085410 DOI: https://doi.org/10.1146/annurev-virology-031413-085410
Gosalbes, M. J., Lamelas, A., Moya, A., & Latorre, A. (2008). The striking case of tryptophan provision in the cedar aphid Cinara cedri. Journal of Bacteriology, 190(17), 6026 -6029. doi: 10.1128/JB.00525-08 DOI: https://doi.org/10.1128/JB.00525-08
Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., Tzuri, G., Horowitz, A. R., Belausov, E., Mozes-Daube, N., Kontsedalov, S., Gershon, M., Gal, S., Katzir, N., & Zchori-Fein, E. (2006). Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Applied and Environmental Microbiology, 72(5), 3646-3652. doi: 10.1128/AEM.72.5.3646-3652.2006 DOI: https://doi.org/10.1128/AEM.72.5.3646-3652.2006
Gottlieb, Y., Ghanim, M., Gueguen, G., Kontsedalov, S., Vavre, F., Fleury, F., & Zchori-Fein, E. (2008). Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. The FASEB Journal, 22(7), 2591-2599. doi: 10.1096/fj.07-101162 DOI: https://doi.org/10.1096/fj.07-101162
Guo, L., Li, Z., & Xu, J. (2023). Effects of cadmium stress on bacterial and fungal communities in the whitefly Bemisia tabaci. International Journal of Molecular Sciences, 24(17), 13588. doi: 10.3390/ijms241713588 DOI: https://doi.org/10.3390/ijms241713588
Harish, E. R., Chellappan, M., Kumar, T. M., Mathew, D., Ranjith, M. T., & Girija, D. (2019). Next-generation sequencing reveals endosymbiont variability in cassava whitefly, Bemisia tabaci, across the agro-ecological zones of Kerala, India. Genome, 62(9), 571-584. doi: 10.1139/gen-2018-0050 DOI: https://doi.org/10.1139/gen-2018-0050
Hendry, T. A., Hunter, M. S., & Baltrus, D. A. (2014). The Facultative Symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Applied and Environmental Microbiology, 80(23), 7161-7168. doi: 10.1128/AEM.02447-14 DOI: https://doi.org/10.1128/AEM.02447-14
Himler, A. G., Adachi-Hagimori, T., Bergen, J. E., Kozuch, A., Kelly, S. E., Tabashnik, B. E., Chiel, E., Duckworth, V. E., Dennehy, T. J., Zchori-Fein, E., & Hunter, M. (2011). Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 332(6026), 254-256. doi: 10.1126/science.1199410 DOI: https://doi.org/10.1126/science.1199410
Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216-225. doi: 10.1002/arch.20044 DOI: https://doi.org/10.1002/arch.20044
Hu, F. Y., & Tsai, C. W. (2020). Nutritional relationship between Bemisia tabaci and its primary endosymbiont, Portiera aleyrodidarum, during host plant acclimation. Insects, 11(8), 498. doi: 10.3390/insects11080498 DOI: https://doi.org/10.3390/insects11080498
Instituto Brasileiro de Geografia e Estatística (2012). Relação dos municípios do estado ordenados segundo as mesorregiões e as microrregiões geográficas do IBGE - Paraná - 2012. https://http://www.ipardes. gov.br/pdf/mapas/base_fisica/relacao_mun_micros_mesos_parana.pdf
Instituto Brasileiro de Geografia e Estatística (2021). Produção agrícola municipal 2020. https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2020_v47_br_informativo.pdf
Kanakala, S., & Ghanin, M. (2016). Advances in the genomics of the whitefly Bemisia tabaci: an insect pest and virus vector. In C. Raman, M. R. Goldsmith, & T. A. Agunbiade, Short views on insect genomics and proteomics (vol. 2, pp. 19-40). Cham.: Springer. DOI: https://doi.org/10.1007/978-3-319-24235-4_2
Karut, K., Castle, S. J., Karut, S. T., & Karaca, M. M. (2020). Secondary endosymbiont diversity of Bemisia tabaci and its parasitoids. Infection, Genetics and Evolution, 78, 104104. doi: 10.1016/j.meegid.2019.104104 DOI: https://doi.org/10.1016/j.meegid.2019.104104
Kosztarab, M., & Kozár, F. (1988). Scale insects of central Europe. Springer Dordrecht. DOI: https://doi.org/10.1007/978-94-009-4045-1
Landmann, F. (2019). The Wolbachia endosymbionts. Microbiology Spectrum, 7(2), 2-25. doi: 10.1128/microbiolspec.BAI-0018-2019 DOI: https://doi.org/10.1128/microbiolspec.BAI-0018-2019
Li, H., Jiang, Z., Zhou, J., Liu, X., Zhang, Y., & Chu, D. (2023a). Ecological factors associated with the distribution of Bemisia tabaci cryptic species and their facultative endosymbionts. Insects, 14(3), 252. doi: 10.3390/insects14030252 DOI: https://doi.org/10.3390/insects14030252
Li, J., Dong, B., Zhong, Y., & Li, Z. X. (2023b). Transinfected Wolbachia strains induce a complex of cytoplasmic incompatibility phenotypes: Roles of CI factor genes. Environmental Microbiology Reports, 15(5), 370-382. doi: 10.1111/1758-2229.13169 DOI: https://doi.org/10.1111/1758-2229.13169
Lima, L. H. C., Návia, D., Inglis, P. W., & Oliveira, M. R. V. (2000). Survey of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotypes in Brazil using RAPD markers. Genetics and Molecular Biology, 23(4), 781-785. doi: 10.1590/S1415-47572000000400012 DOI: https://doi.org/10.1590/S1415-47572000000400012
Liu, X. D., & Guo, H. F. (2019). Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Current Opinion in Insect Science, 33, 84-90. doi: 10.1016/j.cois.2019.05.003 DOI: https://doi.org/10.1016/j.cois.2019.05.003
Lloyd, L. (1922). The control of the greenhouse white fly (Asterochiton vaporariorum) with notes on its biology. Annals of Applied Biology, 9(1), 1-32. doi: 10.1111/j.1744-7348.1922.tb05933.x DOI: https://doi.org/10.1111/j.1744-7348.1922.tb05933.x
Lourenção, A. L., Alves, A., Fugi, C., & Matos, E. (2008). Outbreaks of Trialeurodes vaporariorum (West.) (Hemiptera: Aleyrodidae) under field conditions in the State of São Paulo, Brazil. Neotropical Entomology, 37(1), 89-90. doi: 1590/s1519-566x2008000100014 DOI: https://doi.org/10.1590/S1519-566X2008000100014
Marchi, B. R., & Smith, H. A. (2020). Bacterial endosymbiont diversity among Bemisia tabaci (Hemiptera: Aleyrodidae) populations in Florida. Insects, 11(3), 179. doi: 10.3390/insects11030179 DOI: https://doi.org/10.3390/insects11030179
Martin, J. H., & Mound, L. A. (2007). An annotated check list of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa, 1492(1), 84 pp. DOI: https://doi.org/10.11646/zootaxa.1492.1.1
Marubayashi, J. M., Yuki, V. A., Rocha, K. C. G., Mituti, T., Pelegrinotti, F. M., Ferreira, F. Z., Moura, M. F., Navas-Castillo, J., Moriones, E., Pavan, M. A., & Krause-Sakate, R. (2012). At least two indigenous species of the Bemisia tabaci complex are present in Brazil. Journal of Applied Entomology, 137(1-2), 113-121. doi: 10.1111/j.1439-0418.2012.01714.x DOI: https://doi.org/10.1111/j.1439-0418.2012.01714.x
McKenzie, C. L., Kumar, V., Palmer, C. L., Oetting, R. D., & Osborne, L. S. (2014). Chemical class rotations for control of Bemisia tabaci (Hemiptera: Aleyrodidae) on poinsettia and their effect on cryptic species population composition. Pest Management Science, 70(10), 1573-1587. doi: 10.1002/ps.3736 DOI: https://doi.org/10.1002/ps.3736
Mibey, R. K. (1997). Sooty moulds. In Y. Ben-Dov, & C. J. Hogson (Eds.), Soft scale insects: their biology, natural enemies and control (vol. 7A, pp. 275-290). Amsterdam. DOI: https://doi.org/10.1016/S1572-4379(97)80058-9
Milenovic, M., Eickermann, M., Junk, J., & Rapisarda, C. (2023). Life history parameters of Bemisia tabaci MED (Hemiptera: Aleyrodidae) in the present and future climate of central Europe, predicted by physically realistic climatic chamber simulation. Environmental Entomology, 52(3), 502-509. doi: 10.1093/ee/nvad023 DOI: https://doi.org/10.1093/ee/nvad023
Moraes, L. A., Muller, C., Bueno, R. C. O. F., Santos, A., Bello, V. H., Marchi, B. R., Watanabe, L. F. M., Marubayashi, J. M., Santos, B. R., Yuki, V. A., Takada, H. M., Barro, D. R., Neves, C. G., Silva, F. N., Gonçalves, M. J., Ghanim, M., Boykin, L., Pavan, M. A., & Krause-Sakate, R. (2018). Distribution and phylogenetics of whiteflies and their endosymbionts relationships after the mediterranean species invasion in Brazil. Scientific Reports, 8(1), 14589. doi: 10.1038/s41598-018-32913-1 DOI: https://doi.org/10.1038/s41598-018-32913-1
Moran, N. A. (2006). Symbiosis. Current Biology, 16(20), R866-871. doi: 10.1016/j.cub.2006.09.019 DOI: https://doi.org/10.1016/j.cub.2006.09.019
Nauen, R., Ghanim, M., & Ishaaya, I. (2014). Whitefly special issue organized in two parts. Pest Management Science, 70(10), 1438-1439. doi: 10.1002/ps.3870 DOI: https://doi.org/10.1002/ps.3870
Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, E. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219-248. doi: 10.1146/annurev-phyto-072910-095235 DOI: https://doi.org/10.1146/annurev-phyto-072910-095235
Nogueira, I. (2012). Levantamento e localização de alguns endossimbiontes de Bemisia tabaci. Trabalho de conclusão de curso de graduação em Agronomia, Universidade de Brasília, DF, Brasil.
Paschapur, A. U., Singh, A. K., Buski, R., Guru, P. N., Jeevan, B., Mishra, K. K., & Kant, L. (2023). Unravelling geospatial distribution and genetic diversity of greenhouse whitefly, Trialeurodes vaporariorum (Westwood) from Himalayan Region. Scientific Reports, 13(1), 11946. doi: 10.1038/s41598-023-37781-y DOI: https://doi.org/10.1038/s41598-023-37781-y
Perring, T. M. (2001). The Bemisia tabaci species complex. Crop Protection, 20(9), 725-737. doi: 10.1016/S0261-2194(01)00109-0 DOI: https://doi.org/10.1016/S0261-2194(01)00109-0
Perring, T. M., Stansly, P. A., Liu, T. X., Smith, H. A., & Andreason, S. A. (2018). Whiteflies: biology, ecology, and management. In W. Wakil, G. E. Brust, & T. M. Perring, Sustainable management of arthropod pests of tomato (pp. 73-110). Oxford, United Kingdom: AP Academic Press. doi: 10.1016/B978-0-12-802441-6.00004-8 DOI: https://doi.org/10.1016/B978-0-12-802441-6.00004-8
Rizental, M. S. (2020). Distribuição temporal e espacial de haplótipos de Bemisia tabaci (Gennadius, 1889) no Brasil. Tese de doutorado em Fitossanidade, Curso de Agronomia, Universidade Federal de Goiás, GO, Brasil.
Rizental, M. S., Santos, P. M., Abreu, A. G., & Quintela, E. D. (2017). Identificação molecular das espécies de mosca branca Bemisia tabaci Gennadius (1889) de diferentes regiões agrícolas do Brasil. Anais do Seminário Jovens Talentos, Santo Antônio de Goiás, GO, Brasil, 11.
Rocha, K. C. G., Marubayashi, J. M., Navas-Castillo, J., Yuki, V. A., Wilcken, C. F., Pavan, M. A., & Krause-Sakate, R. (2011). Only the B biotype of Bemisia tabaci is present on vegetables in São Paulo state, Brazil. Scientia Agricola, 68(1), 120-123. doi: 10.1590/S0103-90162011000100018 DOI: https://doi.org/10.1590/S0103-90162011000100018
Santos-Garcia, D., Juravel, K., Freilich, S., Zchori-Fein, E., Latorre, A., Moya, A., Morin, S., & Silva, F. J. (2018). To B or Not to B: comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies. Frontiers in Microbiology, 25(9), 2254. doi: 10.3389/fmicb.2018.02254 DOI: https://doi.org/10.3389/fmicb.2018.02254
Scott, I. A. W., Workman, P. J., Drayton, G. M., & Burnip, G. M. (2007). First record of Bemisia tabaci biotype Q in New Zealand. New Zealand Plant Protection, 60, 264-270. doi: 10.30843/nzpp.2007.60.4601 DOI: https://doi.org/10.30843/nzpp.2007.60.4601
Servín-Villegas, R., Troyo-Dieguez, E., & Martínez-Carrillo, J. L. (2001). Wild hosts of Bemisia argentifolii Bellows & Perring in semiarid Northwest Mexico. Southwestern Entomologist, 26(3), 239-244.
Silva Rodrigues, C. S. da, Nakasu, E. Y. T., Ortiz, G. V., Pereira, J. L., Lucena-Leandro, V. S., Rêgo-Machado, C. M., Souza, T. A., Martins T. P., & Nagata A. K. I. (2021). Evidence of spread of Bemisia tabaci (Hemiptera: Aleyrodidae) mediated by internal transportation of ornamental plants in Brazil. Neotropical Entomology, 50, 850-857. doi: 10.1007/s13744-021-00881-3 DOI: https://doi.org/10.1007/s13744-021-00881-3
Simón, B., Cenis, J. L., & La Rua, P. (2007). Distribution patterns of the Q and B biotypes of Bemisia tabaci in the Mediterranean Basin based on microsatellite variation. Entomologia Expermentalis et Applicata, 124(3), 327-336. doi: 10.1111/j.1570-7458.2007.00586.x DOI: https://doi.org/10.1111/j.1570-7458.2007.00586.x
Skaljac, M., Kanakala, S., Zanic, K., Puizina, J., Pleic, I. L., & Ghanim, M. (2017). Diversity and phylogenetic analyses of bacterial symbionts in three whitefly species from Southeast Europe. Insects, 8(4), 113. doi: 10.3390/insects8040113 DOI: https://doi.org/10.3390/insects8040113
Sseruwagi, P., Wainaina, J., Ndunguru, J., Tumuhimbise, R., Tairo, F., Guo, J. Y., Vrielink, A., Blythe, A., Kinene, T., Marchi, B. R., Kehoe, M. A., Tanz, S., & Boykin, L. M. (2018). The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae): a case study of the endosymbiont composition. Gates Open Research, 1, 16. doi: 10.12688/gatesopenres.12783.3 DOI: https://doi.org/10.12688/gatesopenres.12783.3
Stauffer, S., & Rose, M. (1997). Biological control of soft scale insects in interior plantscapes in the USA. In Y. Ben-Dov, & C. J. Hogson (Eds.), Soft scale insects: their biology, natural enemies and control (vol. 7B, pp. 183-205). Amsterdam: Elsevier Science B.V. DOI: https://doi.org/10.1016/S1572-4379(97)80083-8
Su, Q., Oliver, K. M., Xie, W., Wu, Q., Wang, S., & Zhang, Y. (2015). The whitefly‐associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Functional Ecology, 29(8), 1007-1018. doi: 10.1111/1365-2435.12405 DOI: https://doi.org/10.1111/1365-2435.12405
Su, Q., Xie, W., Wang, S., Wu, Q., Liu, B., Fang, Y., Xu, B., & Zhang, Y. (2014). The endosymbiont Hamiltonella increases the growth rate of its host Bemisia tabaci during periods of nutritional stress. PLoS One, 9(2), e89002. doi: 10.1371/journal.pone.0089002 DOI: https://doi.org/10.1371/journal.pone.0089002
Sun, D. B., Liu, Y. Q., Qin, L., Xu, J., Li, F. F., & Liu, S. S. (2013). Competitive displacement between two invasive whiteflies: insecticide application and host plant effects. Bulletin of Entomological Research, 103(3), 344-353. doi: 10.1017/S0007485312000788 DOI: https://doi.org/10.1017/S0007485312000788
Tang, X. T., Cai, L., Shen, Y., & Du, Y. Z. (2018). Diversity and evolution of the endosymbionts of Bemisia tabaci in China. PeerJ, 6, e5516. doi: 10.7717/peerj.5516 DOI: https://doi.org/10.7717/peerj.5516
Thao, M. L., & Baumann, P. (2004). Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Current Microbiology, 48(2), 140-144. doi: 10.1007/s00284-003-4157-7 DOI: https://doi.org/10.1007/s00284-003-4157-7
Wahyono, A., Murti, R. H., Hartono, S., Nuringtyas, T. R., Wijonarko, A., Mulyantoro, M., Firmansyah, D., Afifuddin, A., & Purnama, I. C. G. (2023). Current status and complexity of three Begomovirus species in pepper plants in lowlands and highlands in Java Island, Indonesia. Viruses, 15(6), 1278. doi: 10.3390/v15061278 DOI: https://doi.org/10.3390/v15061278
Wang, F., Liu, J., Shuai, S., Miao, C., Chi, B., Chen, P., Wang, K., Li, H., & Liu, Y. (2021). Resistance of Bemisia tabaci Mediterranean (Q‐biotype) to pymetrozine: resistance risk assessment, cross‐resistance to six other insecticides and detoxification enzyme assay. Pest Management Science, 77(4), 2114-2121. doi: 10.1002/ps.6240 DOI: https://doi.org/10.1002/ps.6240
Wang, Y. B., Li, C., Yan, J. Y., Wang, T. Y., Yao, Y. L., Ren, F. R., & Luan, J. B. (2023). Autophagy regulates whitefly-symbiont metabolic interactions. Applied and Environmental Microbiology, 88(3), e0208921. doi: 10.1128/AEM.02089-21 DOI: https://doi.org/10.1128/AEM.02089-21
Wang, Y. B., Ren, F. R., Yao, Y. L., Sun, X., Walling, L. L., Li, N. N., Bai, B., Bao, X. Y., Xu, X. R., & Luan, J. B. (2020). Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. The ISME Journal, 14(12), 2923-2935. doi: 10.1038/s41396-020-0717-0 DOI: https://doi.org/10.1038/s41396-020-0717-0
Wilson, A. C. C., Ashton, P. D., Calevro, F., Charles, H., Colella, S., Febvay, G., Jander, G., Kushlan, P. F., Macdonald, S. J., Schwartz, J. F., Thomas, G. H., & Douglas, A. E. (2010). Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Molecular Biology, 19(Suppl. 2), 249-258. doi: 10.1111/j.1365-2583.2009.00942.x DOI: https://doi.org/10.1111/j.1365-2583.2009.00942.x
Wu, D., Daugherty, S., van Aken, S. V., Pai, G., Watkins, K., Tallon, L., Zaborsky, J., Dunbar, H., Tran, P., Moran, N., & Eisen, J. (2006). Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biology, 4(6), e188. doi: 10.1371/journal.pbio.0040188 DOI: https://doi.org/10.1371/journal.pbio.0040188
Yao, T. L., Ma, X. Y., Wang, T. Y., Yan, J. Y., Chen, N. F., Hong, J. S., Liu, B. Q., Xu, Z. Q., Zhang, N., L, C., Sun, X., & Luan J. B. (2023). A bacteriocyte symbiont determines whitefly sex ratio by regulating mitochondrial function. Cell Reports, 42(2), 112102. doi: 10.1016/j.celrep.2023.112102 DOI: https://doi.org/10.1016/j.celrep.2023.112102
Ying, L., Baiming, L., Hongran, L., Tianbo, D., Yunli, T., & Dong, C. (2021). Effect of Cardinium infection on the probing behavior of Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Journal of Insect Science, 21(3), 13. doi: 10.1093/jisesa/ieab040 DOI: https://doi.org/10.1093/jisesa/ieab040
Zchori-Fein, E., & Brown, J. K. (2002). Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America, 95(6), 711-718. doi: 10.1603/0013-8746(2002)095[0711:DOPAWB]2.0.CO;2 DOI: https://doi.org/10.1603/0013-8746(2002)095[0711:DOPAWB]2.0.CO;2
Zchori-Fein, E., Perlman, S. J., Kelly, S. E., Katzir, N., & Hunter, M. S. (2004). Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ‘Candidatus Cardinium hertigii’. International Journal of Systematic and Evolutionary Microbiology, 54(3), 961-968. doi: 10.1099/ijs.0.02957-0 DOI: https://doi.org/10.1099/ijs.0.02957-0
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.