Efeitos dos métodos de secagem em túnel solar, secagem à sombra e secagem por microondas na cinética de secagem de morango (Fragaria ananassa)

Autores

DOI:

https://doi.org/10.5433/1679-0359.2022v43n5p1941

Palavras-chave:

Modelagem matemática, Secagem, Alimentos, Taxa de umidade, Taxa de secagem.

Resumo

Morangos inteiros e cortados ao meio foram secos usando três métodos, que foram secagem em túnel solar, secagem à sombra e secagem por micro-ondas (180W, 540W e 900W) para determinar a característica de secagem e modelagem. Os pesquisadores mediram a irradiação solar nas temperaturas ambiente e de secagem do ar e a velocidade do ar em intervalos específicos em várias partes do secador. Como a secagem por micro-ondas (180, 540 e 900 W) afetou o tempo de secagem e a proporção de secagem das amostras inteiras e cortadas de morango foi investigado. Além disso, os dados do processo de secagem foram aplicados a 5 modelos matemáticos diferentes, que foram a distribuição de Weibull, Midilli et al., Jena e Das e Aghbashlo et al. Modelos de equação. Os pesquisadores compararam os níveis de desempenho dos modelos de acordo com o coeficiente de correlação (R2), valor do qui-quadrado (x2), além da raiz do erro quadrático médio (RMSE) entre as razões de umidade observadas e previstas. Além disso, a Distribuição Weibull e Midilli et al. os modelos revelaram a proporção de secagem de forma satisfatória para todos os métodos de secagem.

Downloads

Não há dados estatísticos.

Biografia do Autor

Sevil Karaaslan, Faculty of Agriculture, Isparta University of Applied Sciences

Associate Prof. Dr., Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta, Turkey.

Handan Culal Kilic, Faculty of Agriculture, Isparta University of Applied Sciences

Associate Prof. Dr., Department of Plant Protection, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta, Turkey.

Kamil Ekinci, Faculty of Agriculture, Isparta University of Applied Sciences

Associate Prof. Dr., Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta, Turkey.

Referências

Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219 (15 March 2017), 109-116. doi: 10.1016/j.foodchem.2016.09.103

Aghbashlo, M., Kianmehr, M. H., Khani, S., & Ghasemi, M. (2009). Mathematical modelling of thin layer drying of carrot. International Agrophysics, 23(4), 313-317.

Akpinar, E. K. (2011). Drying of parsley leaves in a solar dryer and under open sun: modeling, energy, and exergy aspects. Journal of Food Process Engineering, 34(1), 27-48. doi: 10.1111/j.1745-4530.2008.003 35.x

Al-Hilphy, A. R. S., & Alrikabi, A. K. J. (2013). Mathematical modeling and experimental study on thin layer halojen dryer of strawberry and study it’s effect on antioxidant activity. American Journal of Agricultural and Biological Sciences, 8(4), 268-281. doi: 10.3844/ajabssp.2013.268.281

Alibas, I. (2015). Drying of thin layer mango slices with microwave technique. Anadolu Journal of Agricultural Sciences, 30(2015), 99-109. doi: 10.7161/anajas.2015.30.2.99-109

Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36(2017), 286-300. doi: 10.1016/j.ultsonch.2016.12.007

Amer, B. M. A. (2019). Simulation of air characteristics for pv hybrid drying system and drying kinetics of strawberry fruits. Misr Journal of Agricultural Engineering, 36(2), 515-534.

Atacan, K. (2018). Effect of spray drying parameters on blueberry and strawberry juice concentrates. M. Sc. thesis in Food Engineering University of Gaziantep, Gaziantep, Turkey.

Babalis, S. J., Papanicolaou, E., Kyriakis, N., Vassilios, G., & Belessiotis, V. G. (2006). Evaluation of thin layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering, 75(2), 205-214. doi: 10.1016/j.jfoodeng.2005.04.008

Beige, M. (2016). Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat Mass Transfer, 52(8), 1435-1442. doi: 10.1007/s00231-015-1646-8

Doymaz, I. (2008). Convective drying kinetics of strawberry. Chemical Engineering and Processing: Process Intensification, 47(5), 914-919. doi: 10.1016/j.cep.2007.02.003

Doymaz, I. (2014). Suitability of thin layer drying models for infrared drying of peach slices. Journal of Food Processing and Preservation, 38(6), 2232-2239. doi: 10.1111/jfpp.12277

Doymaz, I., & Aktas, C. (2018). Determination of drying and rehydration characteristics of eggplant slices. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 833-841. doi: 10.17341/ gazimmfd.416386

Doymaz, I., & Pala, M. (2002). The effects of dipping pretreatments on air drying rates of the seedless grapes. Journal of Food Engineering, 52(4), 413-417. doi: 10.1016/S0260-8774(01)00133-9

Doymaz, I., Kipcak, A. S., & Piskin, S. (2015). Characteristics of thin layer infrared drying of green bean. Czech Journal of Food Sciences, 33(1), 83-90. doi: 10.17221/423/2014-CJFS

El-Beltagy, A., Gamea, G. R., & Amer Eissa, A. H. (2007). Solar drying characteristics of strawberry. Journal of Food Engineering, 78(2), 456-464. doi: 10.1016/j.jfoodeng.2005.10.015

Ertekin, C., Gozlekci, S., Heybeli, N., Gencer, A., Adak, N., & Oksal, B. S. (2014). Drying of strawberries with infrared dryer. Proceedings International Conference of Agricultural Engineering, Zurich, Switzerland. www.eurageng.eu

Evin, D. (2011). Investigation on the drying kinetics of sliced and whole rosehips at different moisture contents under microwave treatment. Scientific Research and Essays, 6(11), 2337-2347. doi: 10.5897/SRE11.082

Food and Agriculture Organization of the United Nations (2020). Statistical Database. http://www.fao.org/ faostat

Izli, N., & Polat, A. (2019). Effect of convective and microwave methods on drying characteristics, color, rehydration and microstructure properties of ginger. Food Science and Technology, 39(3), 652-659. doi: 10.1590/fst.04518

Jena, S., & Das, H. (2007). Modelling for vacuum drying characteristics of coconut press cake. Journal of Food Engineering, 79(1), 92-99. doi: 10.1016/j.jfoodeng.2006.01.032

Kamarulzaman, A., Hasanuzzaman, M., & Rahim, N. A. (2021). Global advancement of solar drying technologies and its future prospects: a review. Solar Energy, 221(2021), 559-582. doi: 10.1016/j.solener. 2021.04.056

Karaaslan, S., & Balta, A. (2014). Determination of suitable drying model for combined microwave- fan assisted convection drying of strawberry. Turkish Journal of Agricultural and Natural Sciences, 1(Special Issue 2), 2062- 2067. https://dergipark.org.tr/en/pub/turkjans/issue/13311/161024

Kirmaci, V., Usta, H., & Menlik, T. (2008). An experimental study on freeze-drying behavior of strawberries. Drying Technology, 26(12), 1570-1576. doi: 10.1080/07373930802467037

Kumar, M., Sansaniwal, S. K., & Khatak, P. (2016). Progress in solar dryers for drying various commodities. Renewable Sustainable Energy Reviews, 55, 346-360. doi: 10.1016/j.rser.2015.10.158

Macias, M. A. (2013). Comparatives studies of different drying process of strawberry hot air drying freeze-drying and swell-drying: application on the biological compounds preservation. HAL Id: tel-01066753. https://tel.archives-ouvertes.fr/tel-01066753

Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single layer drying. Drying Technology, 20(7), 1503-1513. doi: 10.1081/DRT-120005864

Mohammed, S., Edna, M., & Siraj, K. (2020). The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: a case of mangoes and pineapples. Heliyon, 6(6), e04163. doi: 10.1016/j.heliyon.2020.e04163

Naderinezhad, S., Etesami, N., Najafabady, A. P., & Falavarjani, M. G. (2016). Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters. Food Science and Nutrition, 4(1), 110-118. doi: 10.1002/fsn3.258

Oluwaseun, A. R., Nour, H. A., Siti, K. A. M., & Olusegun, A. O. (2018). Mathematical modeling of thin layer drying using open sun and shade of Vernonia amygdalina leaves. Agriculture and Natural Resources, 52(1), 53-58. doi: 10.1016/j.anres.2018.05.013

Ozbahçali, G., & Aslantas, R. (2015). Some strawberry cultivars (Fragaria X ananassa Duch.) determination of performance in Erzurum ecological conditions, Ataturk University Journal of Agricultural Faculty, 46(2), 75-84. https://dergipark.org.tr/en/download/article-file/278054

Ozbek, B., & Dadali, G. (2007). Thin layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83(4), 541-549. doi: 10.1016/j.jfoodeng.2007.04.004

Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. V. (1995). Microwave assisted convective air drying of thin layer carrots. Journal of Food Engineering, 25(2), 283-293. doi: 10.1016/0260-8774(94)00031-4

Prosapio, V., & Norton, I. (2017). Influence of osmotic dehydration pre-treatment on oven-drying and freeze drying performance. LWT-Food Science and Technology, 80(2017), 401-408. doi: 10.1016/j.lwt.2017.03. 012

Rodriguez-Ramirez, J., Mendez-Lagunas, L. L., Lopez-Ortiz, A., Muniz-Becera, S., & Nair, K. (2021). Solar drying of strawberry using polycarbonate with UV protection and polyethylene covers: influence on anthocyanin and total phenolic content. Solar Energy, 221, 120-130. doi: 10.1016/j.solener. 2021.04.025

Sacilik, K., & Elicin, A. K. (2005). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73(3), 281-289. doi: 10.1016/j.jfoodeng.2005.03.024

Soysal, Y. (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2), 167-173. doi: 10.1016/j.biosystemseng.2004.07.008

Szandzinska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103(4), 1065-1074. doi: 10.1016/j.ijheatmasstransfer.2016.08.001

Vega-Galvez, A., Puente-Diaz, L., Lemus-Mondaca, R., Miranda, M., & Torres, M. J. (2012). Mathematical modelling of thin layer drying kinetics of cape gooseberry (Physalis peruviana L.). Journal of food Processing and Preservation, 38(2), 728-736. doi: 10.1111/jfpp.12024

Downloads

Publicado

2022-06-17

Como Citar

Karaaslan, S., Kilic, H. C., & Ekinci, K. (2022). Efeitos dos métodos de secagem em túnel solar, secagem à sombra e secagem por microondas na cinética de secagem de morango (Fragaria ananassa). Semina: Ciências Agrárias, 43(5), 1941–1956. https://doi.org/10.5433/1679-0359.2022v43n5p1941

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.