Co-inoculação de rizobio, azospirillum e cianobactérias no aumento da produção de feijão comum
DOI:
https://doi.org/10.5433/1679-0359.2020v41n5supl1p2015Palavras-chave:
Anabaena cylindrica, Azospirillum brasilense, Phaseolus vulgaris, Rhizobium freirei, Rhizobium tropici.Resumo
A inoculação associada de Rhizobium, Azospirillum e uma cianobactéria diazotrófica Anabaena cylindrica é uma tecnologia que ainda não foi testada e estabelecida para o feijão comum (Phaseolus vulgaris) e pode ser uma estratégia promissora para aumentar a produtividade das culturas, combinando os benefícios da fixação biológica de nitrogênio com a produção de fitohormônios de crescimento vegetal. Portanto, o objetivo deste estudo foi avaliar a co-inoculação de Rizobium, Azospirilum brasilense e Anabaena cylindrica, como uma alternativa para otimizar o desempenho simbiótico e o desenvolvimento do feijoeiro, em casa de vegetação. Os tratamentos foram: T1-control, T2-N-mineral (100 kg N ha-1), T3- Rhizobium (R. tropici+R. freirei), T4- A. brasilense, T5- A. cylindrica, T6- Rhizobium + A. brasilense, T7- Riz + Ana, T8- Azo + Ana, T9- Riz + Azo + Ana. O delineamento experimental foi inteiramente casualizado, com quatro repetições. A co-inoculação de Rhizobium (R. tropici+R. freirei) + Azo + Ana promoveu aumento do feijão (IPR Campos Gerais) em altura das plantas, comprimento e volume de raiz, massa seca da parte aérea, N acumulado da parte aérea, número e matéria seca dos nódulos no florescimento, número de grãos por vagem, peso de cem grãos e de grãos por planta, o que contribuiu para incremento da produção. Houve um aumento na produção de grãos de feijão com co-inoculação dupla e tripla de rizobia com azospirila e / ou cianobactérias, variando de 62 a 84%, com o maior aumento de produção observado no tratamento inoculado com Riz + Azo + Ana (84%), semelhante ao tratamento com nitrogênio mineral. No entanto, experimentos de campo podem contribuir para elucidar o desempenho de microrganismos benéficos inoculados.Downloads
Referências
Bashan, Y., Bashan, L. de, Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant and Soil, 378(1), 1-33. doi: 10.1007/s11104-013-1956-x
Bremner, J., & Keeney, D. (1965). Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Acta, 32(1), 482-485. doi: 10.1016/S0003-2670(00)88973-4.
Cardoso, J. D., Hungria, M., & Andrade, D. S. (2012). Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N2 with common bean (Phaseolus vulgaris L.) Applied Microbiology and Biotechnology, 93(5), 2035-2049. doi: 10.1007/s00253-011-3708-2
Dall'Agnol, R. F., Ribeiro, R. A., Ormeno-Orrillo, E., Rogel, M. A., Delamuta, J. R. M., Andrade, D. S., Martínez-Romero, E., Hungria, M. (2013). Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. nternational Journal of Systematic and Evolutionary Microbiology, 63(11), 4167-4173. doi: 10.1099/ijs.0.052928-0
Egamberdieva, D., Berg, G., Lindström, K., & Räsänen, L. A. (2010). Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). European Journal of Soil Biology, 46(3), 269-272. doi: 10.1016/j.ejsobi.2010.01.005
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. doi: 10.1590/S1413-70542011000600001
Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8(73), 1-12. doi: 10.1186/s13568-018-0608-1
Fukami, J., Nogueira, M. A, Araujo, R. S., & Hungria, M. (2016). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 6(3), 1-13. doi: 10.1186/s13568-015-0171-y
Gange, A. C., & Gadhave, K. R. (2018). Plant growth-promoting rhizobacteria promote plant size inequality. Scientific Reports, 8(1), 13828. doi: 10.1038/s41598-018-32111-z
Ghaderiardakani, F., Collas, E., Damiano, D. K., Tagg, K., & Graham, N. S. (2019). Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Scientific Reports, 9(1), 1-13. doi: 10.1038/s41598-018-38093-2
Gordillo-Delgado, F., Marín, E., & Calderón, A. (2016). Effect of Azospirillum brasilense and Burkholderia unamae bacteria on maize photosynthetic activity evaluated using the photoacoustic technique. International Journal of Thermophysics, 37(9), 1-11. doi: 10.1007/s10765-016-2101-x
Hungria, M., Andrade, D. S., Chueire, L. M. D. O., Probanza, A., Guttierrez-Manero, F. J., Megias, M. (2000). Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biology & Biochemistry, 32(11-12), 1515-1528. doi: 10.1016/S0038-0717 (00)00063-8
Hungria, M., Nogueira, M. A., & Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, 49(7), 791-801. doi: 10.1007/s00374-012-0771-5
Jaiswal, P., Prasanna, R., Nayak, S., Sood, A., & Suseela, M. (2008). Characterization of rhizo-cyanobacteria and their associations with wheat seedlings. Egyptian Journal of Biology, 10(1), 20-27.
Kazi, N., Deaker, R., Wilson, N., Muhammad, K., & Trethowan, R. (2016). The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research, 196(1), 368-378. doi: 10.1016/j.fcr.2016.07.012
Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8(141), 1-10. doi: 10.3389/fpls.2017.00141
Loreto, C., Rosales, N., Bermúdez, J., & Morales, E. (2003). Produccion de pigmentos y proteinas de la cianobacteria Anabaena pcc 7120 en relacion a la concentracion de nitrogeno e irradiancia. Gayana Botánica, 60(6), 83-89. doi: 10.4067/S0717-66432003000200001.
Manjunatha, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon, 2(2), 1-28. doi: 10.1016/j.heliyon.2016.e00066
Mulas, D., Seco, V., Casquero, P. A., Velázquez, E., & González-Andrés, F. (2015). Inoculation with indigenous rhizobium strains increases yields of common bean (Phaseolus vulgaris L.) in northern Spain, although its efficiency is affected by the tillage system. Symbiosis, 67(3), 113-124. doi: 10.1007/ s13199-015-0359-6
Parra, M. S., & Oliveira, E. L. (2003). Sugestão de adubação e calagem para culturas de interesse econômico no Estado do Paraná. In: Oliveira, E. L., Feijão (128a ed., pp. 17-18). (Circular Técnica). Londrina: IAPAR.
Peres, A. R., Rodrigues, R. A. F., Arf, O., Portugal, J. R., & Corsini, D. C. D. C. (2016). Co-inoculation of Rhizobium tropici and Azospirillum brasilense in common beans grown under two irrigation depths. Revista Ceres, 63(2), 198-207. doi: 10.1590/0034-737X201663020011
Piotrowska-Niczyporuk, A., Bajguz, A., Kotowska, U., Bralska, M., & Talarek-Karwel, M. (2018). Growth, metabolite profile, oxidative status, and phytohormone levels in the green alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins. Journal of Plant Growth Regulation, 37(4), 1159-1174. doi: 10.1007/s00344-018-9816-9
Rencher, A. (2002). Methods of multivariate analysis (2nd ed.). New York: A John Wiley & Sons, Inc. Publication.
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology advances, 36(4), 1255-1273. doi: 10.1016/j.biotechadv.2018.04.004
Rodrigues, A., Antunes, J., Medeiros, V. D. E., Barros, B. D. F., & Figueiredo, M. D. V. (2012). Co-inoculation response of growth promoting bacterias in plants and Bradyrhizobium sp. in cowpea. Bioscience Journal, 28(1), 196-202.
Schossler, J., Meert, L., Rizzardi, D., & Michalovicz, L. (2016). Yield components and grain yield of common-bean submitted to the inoculation and co-inoculation of Rhizobium tropici and Azospirillum brasilense strains. Revista Scientia Agraria, 17(1), 10-15. doi: 10.5380/rsa.v17i1
Soares, B. L., Ferreira, P. A. A., Rufini, M., Martins, F. A. D., Oliveira, D. P., Reis, R. P., Moreira, F. M. de S. (2016). Agronomic and economic efficiency of common-bean inoculation with rhizobia and mineral nitrogen fertilization. Revista Brasileira de Ciência do Solo, 40(1), 10-15. e0150235. doi: 10.1590/ 18069657rbcs20150235
Soil Survey Staff (2014). Keys to oil taxonomy (12nd ed.). Washington, DC: Natural Resources Conservation Service. Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA).
Stajković, O., Delić, D., Jošić, D., Kuzmanović, Đ., Rasulić, N., & Knežević-Vukčević, J. (2011). Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Romanian Biotechnological Letters, 16(1), 5919-5926.
Steiner, F., Ferreira, H. C. P., & Zuffo, A. M., (2019). Can co-inoculation of Rhizobium tropici and Azospirillum brasilense increase common bean nodulation and grain yield? Semina: Ciências Agrárias, 40(1), 81-98. doi: 10.5433/1679-0359.
Tate, J. J., Gutierrez-Wing, M. T., Rusch, K. A., & Benton, M. G. (2013). The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review Journal of Plant Growth Regulation, 32(2), 417-428. doi: 10.1007/s00344-012-9302-8
Wirtz, N. L., Treble, R. G., & Weger, H. G. (2010). Siderophore-independent iron uptake by iron-limited cells of the cyanobacterium Anabaena flos-aquae. Journal of Phycology, 46(5), 947-957. doi: 10.1111/ j.1529-8817.2010.00881.x
Yadegari, M. (2014). Evaluation of bean (Phaseolus vulgaris) seeds’ inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria (PGPR) on yield and yield components. Advances in Environmental Biology, 8(2), 419-424.
Yagi, R., Andrade, D. S., Waureck, A., & Gomes, J. C. (2015). Nodulations and grain yields of common beans in response to nitrogen fertilization or seed inoculation with Rhizobium freirei. Revista Brasileira de Ciência do Solo, 39(6), 1661-1670. doi: 10.1590/0100068rbcs20140342
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.