Técnicas de clusterização e comparação baseada em inovação em empresas de Londrina e Região
DOI:
https://doi.org/10.5433/1679-0375.2024.v45.49522Palavras-chave:
Inovação, Clusterização, K-means, Agrupamento hierárquico, Análise dos Componentes PrincipaisResumo
Inovação pode ser vista como um alicerce para o sucesso em várias empresas. Entretanto, pesquisas voltadas à mensuração e descrição da inovação são frequentemente baseadas em técnicas clássicas da estatística. Neste contexto, este trabalho aplicou técnicas de aprendizado de máquina não supervisionado para realizar a clusterização de empresas na região de Londrina, investigando como as variáveis relacionadas à inovação se diferenciam entre os clusters identificados. Os dados foram coletados por meio de um instrumento de pesquisa adaptado do CIS 4 e da PINTEC, totalizando 26 empresas respondentes, porém 23 foram analisadas neste trabalho. Quatro algoritmos de clusterização foram aplicados: k-means, k-means+PCA, hierárquico e hierárquico+PCA. Quanto aos resultados, o algoritmo hierárquico+PCA obteve uma melhor separação entre empresas de serviços e manufatura. Os clusters identificados pelo valor "``1" indicaram uma preocupação com fatores como investimento regular em P&D, colaborações para inovação e solicitações/registros de patentes nos últimos três anos. Ao analisar as características demográficas, destaca-se que os clusters obtidos pelo hierárquico+PCA demonstraram uma maior presença de empresas do setor de serviços, enquanto o cluster 1 apresentou uma predominância de indústrias, indicando que estas possuem mais características inovadoras na região de Londrina.
Downloads
Referências
Aarstad, J., & Kvitastein, O. A. (2020). Enterprise R&D investments, product innovation and the regional industry structure. Regional Studies, 54(3), 366–376. DOI: https://doi.org/10.1080/00343404.2019.1624712
Acs, Z. J., & Audretsch, D. B. (Eds.). (2003). Handbook of Entrepreneurship Research (pp. 55-79). Springer. DOI: https://doi.org/10.1007/0-387-24519-7_4
Aidoo, E. N., Appiah, S. K., Awashie, G. E., Boateng, A., & Darko, G. (2021). Geographically weighted principal component analysis for characterising the spatial heterogeneity and connectivity of soil heavy metals in Kumasi, Ghana. Heliyon, 7(9), e08039. DOI: https://doi.org/10.1016/j.heliyon.2021.e08039
Akman, G., Yorur, B., Boyaci, A. I., & Chiu, M.-C. (2023). Assessing innovation capabilities of manufacturing companies by combination of unsupervised and supervised machine learning approaches. Applied Soft Computing, 147, 110735. DOI: https://doi.org/10.1016/j.asoc.2023.110735
Alam, S., Dobbie, G., Koh, Y. S., Riddle, P., & Ur Rehman, S. (2014). Research on particle swarm optimization based clustering: A systematic review of literature and techniques. Swarm and Evolutionary Computation, 17, 1–13. DOI: https://doi.org/10.1016/j.swevo.2014.02.001
Anaconda. (2023). Anaconda: The Operating System for AI.
Anzola-Román, P., Bayona-Sáez, C., & García-Marco, T. (2018). Organizational innovation, internal R&D and externally sourced innovation practices: Effects on technological innovation outcomes. Journal of Business Research, 91, 233–247. DOI: https://doi.org/10.1016/j.jbusres.2018.06.014
Barney, J. (2010). Gaining and sustaining competitive advantage (4th ed.). Pearson.
Basberg, B. L. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2–4), 131–141. DOI: https://doi.org/10.1016/0048-7333(87)90027-8
Bolívar-Ramos, M. T. (2017). The relation between R&D spending and patents: The moderating effect of collaboration networks. Journal of Engineering and Technology Management, 46, 26–38. DOI: https://doi.org/10.1016/j.jengtecman.2017.11.001
Ceccagnoli, M. (2009). Appropriability, Preemption, and Firm Performance. Strategic Management Journal, 30(1), 81–98. DOI: https://doi.org/10.1002/smj.723
Claudino, T. B., Santos, S. M. dos, Cabral, A. C. de A., & Pessoa, M. N. M. (2017). Fostering and limiting factors of innovation in Micro and Small Enterprises. RAI Revista de Administração e Inovação, 14(2), 130–139. DOI: https://doi.org/10.1016/j.rai.2017.03.007
Condrobimo, A. R., Sano, A. V. D., & Nindito, H. (2016). The Application Of K-Means Algorithm For LQ45 Index on Indonesia Stock Exchange. ComTech: Computer, Mathematics and Engineering Applications, 7(2), 151. DOI: https://doi.org/10.21512/comtech.v7i2.2256
Confederação Nacional da Indústria [CNI]. (2021). Inovação na indústria: Pesquisa com líderes empresariais.
da Silva, A. L., & Guerrini, F. M. (2021). Reference model for building innovation networks in information technology. Gestão & Produção, 28(3), 1–20. DOI: https://doi.org/10.1590/1806-9649-2021v28e4651
de Castro, L. N., & Ferrari, D. G. (2016). Introdução à mineração de dados: Conceitos básicos, algoritmos e aplicações. Saraiva Uni.
de Carvalho, H. G., dos Reis, D. R., & Cavalcante, M. B. (2011). Gestão da inovação. Aymará.
de Castro, R. G., da Silva, J. F., & Paula, F. O. de. (2020). Inovação de serviço e seu impacto no desempenho financeiro. Pretexto, 21(1), 86–102.
Eszergár-Kiss, D., & Caesar, B. (2017). Definition of user groups applying Ward’s method. Transportation Research Procedia, 22, 25–34. DOI: https://doi.org/10.1016/j.trpro.2017.03.004
Etzkowitz, H., & Zhou, C. (2017). Hélice Tríplice: inovação e empreendedorismo universidade-indústria-governo. Estudos Avançados, 31(90), 23–48. DOI: https://doi.org/10.1590/s0103-40142017.3190003
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), 37–53.
Furtado, A., Quadros, R., & Domingues, S. A. (2007). Intensidade de P&D das empresas brasileiras. Inovação Uniemp, 3(6), 26–27.
Galvão, N. D., & Marin, H. d. F. (2009). Técnica de mineração de dados: uma revisão da literatura. Acta Paulista de Enfermagem, 22(5), 686–690. DOI: https://doi.org/10.1590/S0103-21002009000500014
Goldschmidt, R., Passos, E., & Bezerra, E. (2015). Data mining: conceitos, técnicas, algoritmos, orientações e aplicações (2nd ed.). Gen LTC.
Governo Federal. (2022). Serviços crescem pelo quarto mês seguido, aponta IBGE.
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83–90. DOI: https://doi.org/10.1016/j.tifs.2017.12.006
Huang, X., Ma, L., Li, R., & Liu, Z. (2020). Determinants of Innovation Ecosystem in Underdeveloped Areas—Take Nanning High-Tech Zone in Western China as an Example. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 135. DOI: https://doi.org/10.3390/joitmc6040135
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90–95. DOI: https://doi.org/10.1109/MCSE.2007.55
Iata, C., & Cunha, C. J. C. de A. (2018). A Atuação da Tríplice Hélice em Santa Catarina pela Visão dos Núcleos de Inovação Tecnológica (NITs) do Estado. Navus. Revista de Gestão e Tecnologia, 8(4), 180–188. DOI: https://doi.org/10.22279/navus.2018.v8n4.p180-188.737
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. DOI: https://doi.org/10.1016/j.ins.2022.11.139
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical Learning (8th ed.). Springer.
James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An Introduction to Statistical Learning with Applications in Python (Vol. 1). Springer. DOI: https://doi.org/10.1007/978-3-031-38747-0_1
Kinoshita, K. F., Cirani, C. B., & da Silva, W. N. (2013). A Inovação em Serviços no Brasil: uma Comparação Internacional. Faculdade de Economia, Administração, Contabilidade e Atuária da Universidade de São Paulo, Seminários em Administração [Anais]. 16 SEMEAD Seminários em Administração, São Paulo, Brasil.
Kon, A. (2016). Ecossistemas de inovação: A natureza da inovação em serviços. Revista de Administração, Contabilidade e Economia Da Fundace, 7(1), 15–27. DOI: https://doi.org/10.13059/racef.v7i1.170
Liu, Y., Liang, C. C., & Phillips, F. (2020). Precursors of intellectual property rights enforcement in East and Southeast Asia. Industrial Marketing Management, 90, 133–142. DOI: https://doi.org/10.1016/j.indmarman.2020.06.013
Luzzini, D., Amann, M., Caniato, F., Essig, M., & Ronchi, S. (2015). The path of innovation: purchasing and supplier involvement into new product development. Industrial Marketing Management, 47, 109–120. DOI: https://doi.org/10.1016/j.indmarman.2015.02.034
Ma, X., Hao, Y., Li, X., Liu, J., & Qi, J. (2023). Evaluating global intelligence innovation: An index based on machine learning methods. Technological Forecasting and Social Change, 194, 1–17. DOI: https://doi.org/10.1016/j.techfore.2023.122736
Maćkiewicz, A., & Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19(3), 303–342. DOI: https://doi.org/10.1016/0098-3004(93)90090-R
Mairesse, J., & Mohnen, P. (2010). Using Innovation Surveys for Econometric Analysis. In B. H. Hall, & N. Rosenberg Handbook of the Economics of Innovation (pp. 1129–1155, Vol. 2). Elsevier. DOI: https://doi.org/10.1016/S0169-7218(10)02010-1
Najafi-Tavani, S., Najafi-Tavani, Z., Naudé, P., Oghazi, P., & Zeynaloo, E. (2018). How collaborative innovation networks affect new product performance: Product innovation capability, process innovation capability, and absorptive capacity. Industrial Marketing Management, 73, 193–205. DOI: https://doi.org/10.1016/j.indmarman.2018.02.009
Organization for Economic Co-operation and Developmen [OECD]. (2018). Oslo Manual 2018: Guidelines for Collecting, Reporting and Using Data on Innovation (4th ed.). OECD.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.
Raschka, S. (2015). Python Machine Learning. Packt Publishing Ltd.
Rhoden, I., Weller, D., & Voit, A. K. (2022). Spatio-Temporal Dynamics of European Innovation—An Exploratory Approach via Multivariate Functional Data Cluster Analysis. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), 1–23. DOI: https://doi.org/10.3390/joitmc8010006
Robinson, S., & Stubberud, H. A. (2012). Issues in innovation for Norwegian SMES. Journal of International Business Research, 11(1), 53–62.
Roux, M. (2018). A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms. Journal of Classification, 35(2), 345–366. DOI: https://doi.org/10.1007/s00357-018-9259-9
Santos, R. de O., Gorgulho, B. M., Castro, M. A. de, Fisberg, R. M., Marchioni, D. M., & Baltar, V. T. (2019). Principal Component Analysis and Factor Analysis: differences and similarities in Nutritional Epidemiology application. Revista Brasileira de Epidemiologia, 22, 1–14. DOI: https://doi.org/10.1590/1980-549720190041
Shannon, W. D. (2007). Cluster Analysis. DOI: https://doi.org/10.1016/S0169-7161(07)27011-7
Silva, L. A. (2016). Introdução à Mineração de Dados com aplicações em R (1st ed.). Gen LTC.
Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716–80727. DOI: https://doi.org/10.1109/ACCESS.2020.2988796
The pandas development team. (2020). Pandas.
Waskom, M. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. DOI: https://doi.org/10.21105/joss.03021
Zaini, W. M. F., Lai, D. T. C., & Lim, R. C. (2022). Identifying patent classification codes associated with specific search keywords using machine learning. World Patent Information, 71, 1–10. DOI: https://doi.org/10.1016/j.wpi.2022.102153
Zengin, K., Esgi, N., Erginer, E., & Aksoy, M. E. (2011). A sample study on applying data mining research techniques in educational science: Developing a more meaning of data. Procedia - Social and Behavioral Sciences, 15, 4028–4032. DOI: https://doi.org/10.1016/j.sbspro.2011.04.408
Zhou, J., & Luo, Q. (2023). Influence factor studies based on ensemble learning on the innovation performance of technology mergers and acquisitions. Mathematics and Computers in Simulation. [In press], 1–23.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ana Paula Barbosa de Morais, Matheus Santos Dias, Bruno Samways dos Santos, Rafael Henrique Palma Lima, Pedro Rochavetz de Lara Andrade
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os Direitos Autorais para artigos publicados nesta revista são de direito do autor. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais. A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.