Resistência ao cisalhamento de vigas de concreto autoadensável com adição de fibras de aço

Resistência ao cisalhamento de vigas de concreto autoadensável com adição de fibras de aço

Autores

DOI:

https://doi.org/10.5433/1679-0375.2021v42n1p45

Palavras-chave:

Concreto autoadensável, Fibras de aço, Resistência ao cisalhamento, Vigas. Concreto estrutural.

Resumo

A utilização do concreto autoadensável tem crescido nas últimas décadas devido à diversos motivos, sendo os principais a elevada fluidez, que dispensa a utilização de vibradores mecânicos, a facilidade de concretagem e a maior qualidade do concreto, resultado do melhor adensamento, permitindo a concretagem em peças esbeltas e com maior taxa de armadura. Entretanto, mesmo sendo o concreto autoadensável, apresenta ruptura frágil, baixa resistência à tração e ao cisalhamento, fatores que podem ser amenizados com a utilização de fibras de aço. Para avaliar a resistência ao cisalhamento em vigas de concreto autoadensável com adição de fibras, este estudo apresenta dados coletados na literatura de 113 ensaios experimentais. Utilizando o método estatístico Raiz do Erro Quadrático Médio (RMSE) e a Classificação por Pontos de Demérito de Collins (DPC), foram avaliadas a aplicabilidade de cinco equações normativas e dez equações desenvolvidas em estudos experimentais para a estimativa da resistência ao cisalhamento de vigas de concreto convencional. Os resultados mostram que, diferente do concreto sem adição de fibras, o aumento do diâmetro do agregado diminui a resistência ao cisalhamento quando adicionadas fibras no CAA. Entretanto, o aumento do volume de fibras corresponde à um aumento da resistência ao cisalhamento em concretos com resistência à compressão inferiores a 50 MPa. Os resultados demonstram que o método RMSE é indicado para análise da precisão, mas não da segurança das equações de estimativa de resistência ao cisalhamento, que é melhor avaliada pela DPC. As equações de estimativa da resistência ao cisalhamento propostas em normas apresentaram resultados com satisfatória margem de segurança e economia, podendo ser empregadas no dimensionamento de estruturas.

Biografia do Autor

Gustavo Savaris, Universidade Tecnológica Federal do Paraná - UTFPR, Campus Toledo

Estudante de Engenharia Civil, Universidade Federal de Tecnologia - Paraná, Toledo, Paraná.

Isabela de Gois Laufer, Universidade Tecnológica Federal do Paraná - UTFPR, Campus Toledo

Prof. Dr., COECI, Universidade Federal de Tecnologia - Paraná, Toledo, Paraná, Brasil.

Referências

ACI - AMERICAN CONCRETE INTITUTE. Building code requirements for reinforced concrete and commentary (ACI 318-89/318R-89). Farmington Hills: ACI, 1989.

ACI - AMERICAN CONCRETE INSTITUTE. Building code requirements for reinforced concrete and commentary (ACI 318-14). Farmington Hills: ACI, 2014.

ADAM, M. A.; SAID, M.; EKKARIB, T. M. Shear performance of fiber reinforced self compacting concrete deep beams. International Journal of Civil Engineering and Technology (IJCIET), [s. l.], v. 7, n. 1, p. 25-46, 2016.

ALTAAN, S. A.; AL-NEIMEE, Z. S. Shear strength of steel fibre self-compacting reinforced concrete beams. In: INTERNATIONAL CONFERENCE CONCRETE IN THE LOW CARBON ERA, 2012, Dundee, UK. Proceedings […]. Dundee, UK: University of Dundee, 2012.

AOUDE, H.; COHEN, M. Shear response of sfrc beams constructed with scc and steel fibers. Electronic Journal of Structural Engineering, [s. l.], v. 14, 2014.

ASHOUR, S. A.; HASANAIN, G. S.; WAFA, F. F. Shear behavior of high-strength fiber reinforced concrete beams. ACI Structural Journal, Detroit, v. 89, n. 2, p. 176-184, 1992.

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8953: concrete for structural use - Density, strength and consistence classification. Rio de Janeiro: ABNT, 2015.

AFGC - ASSOCIATION FRANÇAISE DE GÉNIE CIVIL. Bétons fibrés à ultra-hautes performances: recommandations provisoires. Paris, France: AFGC, 2013.

BENTUR, A.; MINDESS, S. Fibre reinforced cementitious composites. New York: Elsevier Applied Science, 1990.

COLLINS, M. P. Evaluation of shear design procedures for concrete structures. Ottawa: CSA Technical Committee on Reinforced Concrete Design, 2001.

CNR -DT - NATIONAL RESEARCH COUNCIL; ADVISORY COMMITTEE ON TECHNICAL RECOMMENDATION. Guide for the design and construction of fiber-reinforced concrete structures. Rome, Italy: C, 2007.

CUENCA, E.; ECHEGARAY-OVIEDO, J.; SERNA, P. Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Composites Part B: Engineering, [s. l.], v. 75, n. 15, p. 135-147, June 2015. doi: 10.1016/j.compositesb.2015.01.037

DEUTSCHER AUSSCHUSS FÜR STAHLBETON. DAFSTB: richtlinie stahlfaserbeton. Berlin, Germany: DAFSTB, 2013.

DING, Y. ; ZHANG, F.; PACHECO-TORGAL, F.; ZHANG, Y. Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory. Composite Structures, Dalian, v. 94, n. 8, p. 2440–2449, 2012. doi:10.1016/j.compstruct.2012.02.025

DING, Y.; YOU, Z.; JALALIC, S. The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete. Engineering Structures, Amsterdam, v. 33, n. 1, p. 107-117, 2011. doi: 10.1016/j.engstruct.2010.09.023

EFNARC. Specification and guidelines for self-compacting concrete. Farnham, UK: EFNARC, 2002.

EL-DIEB, A. S.; EL-MAADDAWY, T. A.; AL-RAWASHDAH, O. Shear behavior of ultra-high-strength steel fiber-reinforced self-compacting concrete beams. Construction Materials and Structures, Nova York, p. 972-979, 2014.

EUROPEAN UNION. Eurocode 2: design of concrete structures - Part 1-1: General Rules and Rules for Buildings. Bruxels, Belgium: Comité Européen de Normalisation, 2004.

EVANS, J. R. Statistics, data analysis and decision modeling. 5. ed. London: Pearson, 2013.

FIB - FÉDÉRATION INTERNATIONALE DU BÉTON. Model Code 2010: final draft. Lausanne: FIB, 2012.

FIGUEIREDO, A. D. Concreto com Fibras. In: Concreto Ciência e Tecnologia. São Paulo: Ibracon, 2011 .v. 2, p. 1327-1365.

FRITIH, Y.; VIDAL, T.; TURATSINZE, A.; PONS, G. Flexural and shear behavior of steel fiber reinforced SCC beams. KSCE Journal of Civil Engineering, Nova York, v. 17, p. 1383-1393, 2013. doi: 10.1007/s12205-013-1115-1

GALI, S.; SUBRAMANIAM, K. V. L. Improvements in fracture behavior and shear capacity of fiber reinforced. Construction and Building Materials, Amsterdam, v. 189, p. 205-217. 2018. doi: 10.1016/j.conbuildmat.2018.08.194

GEIKER, M.; JACOBSEN, S. Self-compacting concrete (SCC). In: MINDESS, S. Developments in the formulation and reiforcement of concrete. 2. ed. Vancouver: Woodhead, 2019. cap. 10, p. 229-256.

GREENOUGH, T.; NEHDI, M. Shear behavior of fiber-reinforced self-consolidating concrete slender beams. ACI Materials Journal, Detroit, v. 105, n. 5, p. 468-477, 2008.

HAMEED, A. A.; AL-SHERRAWI, M. H. Influence of Steel Fiber on the Shear Strength of a Concrete Beam. Civil Engineering Journal, Mazandaran, Iran, v. 4. n. 7, p. 1501-1509, 2018. DOI: 10.28991/cej-0309190

HELINCKS, P.; CORTE, W.; BOEL,V.; SCHUTTER, G. Influence of steel fibre reinforcement on the shear resistance and crack pattern formation of self-compacting concrete beams. Key Engineering Materials, Freienbach, v. 452, p. 669-672, 2011.

IMAM, M.; VANDEWALLE, L.; MORTELMANS, F. Shear domain of fibre-reinforced high-strength concrete beams. Engineering Structures, Amsterdam, v. 19, n. 9, p. 738-747, 1997.

KANNAM, P.; SARELLA, V. R.; PANCHARATHI, R. K. Hybrid effects of stirrup ratio and steel fibers on shear behaviour of self-compacting concrete. The Gruyter Archives of Civil EnNgineering, [s. l.], v. LXIV, 2018. doi: 10.2478/ace-2018-0010

KHUNTIA, M.; STOJADINOVIC, B.; GOEL, S. C. Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups. ACI Structural Journal, Detroit, p. 283-289, 1999.

KWAK, Y.; EBERHARD, M. O.; WOO-SUK, K.; KIM, J. Shear strength of steel fiber reinforced concrete beams without stirrups. ACI Structural Journal, Detroit, v. 99, n. 4, p. 530-538, 2002.

LANTSOGHT, E. O. L. Database of shear experiments on steel fiber reinforced concrete beams without stirrups. Materials, Delft, v. 12, n. 6, 2019. DOI: 10.3390/ma12060917

LARSEN, I. L.; THORSTENSEN, R. T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: a review. Construction and Building Materials, Amsterdam, v. 256, n. 30, 2020. DOI: 10.1016/j.conbuildmat.2020.119459

LI, X.; LI, C.; ZHAO, M.; YANG, H.; ZHOU, S. Testing and Prediction of Shear Performance for Steel Fiber Reinforced Expanded-Shale Lightweight Concrete Beams without Web Reinforcements. Materials, v. 12, p. 1594, 2019. doi:10.3390/ma12101594.

NARAYANAN, R.; DARWISH, I. Y. S. Use of Steel Fibers as Shear Reinforcement. ACI Structural Journal, Detroit, v. 84, n. 3, 1987.

NING, X.; DINGA, Y.; ZHANG, F.; ZHANG, Y. Experimental study and prediction model for flexural behavior of reinforced SCC beam containing steel fibers. Construction and Building Materials, Amsterdam, v. 93, n. 15, 2015. doi: 10.1016/j.conbuildmat.2015.06.024

PANSUK, W.; NGUYEN, T. N.; SATO, Y.; DEN UIJL, J. A.; WALRAVEN, J. C. Shear capacity of high performance fiber reinforced concrete I-beams. Construction and Building Materials, Amsterdam, v. 157, p. 182–193, 2017. DOI: 10.1016/j.conbuildmat.2017.09.057

PAUW, P. D.; BUVERIE, N. V.; MOERMAN, W. . Replacement of shear reinforcement by steel fibres in pretensioned concrete beams. In: WALRAVEN, J. C.; STOELHORST, D. (ed.). Tailor made concrete structures. London: Taylor & Francis Group, 2008. p. 391-397.

PERERA, J.; MUTSUYOSHI, H. Prediction of shear strength of reinforced concrete members without web reinforcement. Proceedings of the Japan Concrete Institute, [s. l.], p. 499-504, 2013.

PRAVEEN, K.; RAO, S. V. Steel fibres as a partial shear reinforcement in self-compacting concrete. Recent Advances in Structural Engineering, Singapore, v. 1, p. 935-946, 2019. DOI: 10.1007/978-981-13-0362-3_74

RANDO JUNIOR, A. M.; GUERRA, L.; MORALES,G. Interference from the addition of polypropylene fibers and thin basalt on mechanical strength of micro concrete. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 1, p. 55-62, 2019. DOI: 10.5433/1679-0375.2019v40n1p55

RAWASHDEH, O. J. Z. A. Sher behaviour of steel fiber reinforced ultra high strength self compacted concrete beams. 2015. Dissertation (Master in Civil Engineering) - United Arab Emirates University, 2015.

RILEM. Rilem TC 162-TDF: test and design methods for steel fibre reinforced concrete. Materials and Structures, Nova York, v. 36, p. 560-567, Oct. 2003.

SARVEGHADI, M.; GANDOMI, A. H.; BOLANDI, H.; ALAVI, A. H. Development of prediction models for shear strength of SFRCB using a machine learning approach. Neural Computing and Applications, Amsterdam, v. 31, p. 2085–2094, 2019. doi: 10.1007/s00521-015-1997-6

SHAH, A.; AHMAD, S. An experimental investigation into shear capacity of high strength concrete beams. Asian Journal of Civil Engineering, Islamabad, p. 549-562, 2007.

SHARMA, A. K. Shear Strength of steel fiber reinforced concrete beams. ACI Structural Journal, Detroit, p. 624-628, 1986.

SHOAIB, A.; LUBELL, A. S.; BINDIGANAVILE, V. S. Size effect in shear for steel fiber-reinforced concrete members without stirrups. ACI Structural Journal, Detroit, v. 111, n. 5, p. 1081-1090, 2014.

SMARZEWSKI, P. Hybrid fibres as shear reinforcement in high-performance concrete beams with and without openings. Applied Sciences, Basel, v. 8, n. 11, 2018. DOI: 10.3390/app8112070.

SUJIVORAKYL, C. Model of Hooked Steel Fibers Reinforced Concrete under Tension. In.: High Performance Fiber Reinforced Cement Composites 6. Dordrecht: Springer, 2012. v. 2, p19-26. In: doi.org/10.1007/978-94-007-2436-5.

SUSETYO, J.; GAUVREAU, P.; VECCHIO, F. J. Effectiveness of steel fiber as minimum shear. ACI Structural Journal, Detroit, p. 488-496, 2011.

SWAMY, R. N.; JONES, R.; CHIAM, A. T. P. Influence of steel fibres on the shear resistance of lightweight concrete T-beams. ACI Structural Journal, Detroit, p. 103–114, 1993.

TUTIKIAN, B. F.; MOLIN, D. C. D. Concreto auto-adensável. São Paulo: Pini, 2008.

WILLE, K.; KIM, D. J.; NAAMAN, A. E. Strain-hardening UHP-FRC with low fiber contents. Materials and Structures, Nova York, v. 44, p. 583-598, 2010.

ZSUTTY, T. C. Shear strength prediction for separate categories of simple beam tests. ACI Journal Proceed, v. 68, n. 2, pp. 138–143, 1971.

Downloads

Publicado

2021-05-07

Como Citar

Savaris, G., & Laufer, I. de G. (2021). Resistência ao cisalhamento de vigas de concreto autoadensável com adição de fibras de aço. Semina: Ciências Exatas E Tecnológicas, 42(1), 45–62. https://doi.org/10.5433/1679-0375.2021v42n1p45

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Loading...