A Machine Learning Model to Automatic Assessment of Gross Motor Development in Children using Posenet

A Machine Learning Model to Automatic Assessment of Gross Motor Development in Children using Posenet

Authors

DOI:

https://doi.org/10.5433/1679-0375.2023.v44.48131

Keywords:

automatic assessment, machine learning, motor development, TGMD-3

Abstract

Gross motor skills such as sitting, jumping, and running are activities that involve the large muscles of the human body. The Test of Gross Motor Development, or TGMD, is widely used by researchers, pediatricians, physiotherapists, and educators from different countries to assess these skills in children aged 3 to 11 years. An important part of the test is that the movement, performed by the children, needs to be recorded and assessed by two or more professionals. The assessment process is laborious and takes time, and its automation is one of the main points to be developed. In recent years, methods have been proposed to automate the assessment according to the TGMD. The hypothesis investigated in this work is that it is possible to induce a machine learning model to identify whether the movement executed by the child is correct, considering only the first criterion of the TGMD-3 jumping skill. The skeleton of the children was extracted using PoseNet. A dataset of 350 images of Brazilian children between 3 and 11 years old performing the preparatory movement for the jump was used. The experimental results show an accuracy of 84%.

Downloads

Download data is not yet available.

Author Biographies

Edson Luiz Pilati Filho, State University of Londrina - UEL

Computer Science Department, State University of Londrina, Londrina, Paraná, Brazil

Rodrigo Martins de Oliveira Spinosa, State University of Londrina - UEL

Prof. Dr., Design Department, State University of Londrina, Londrina, Paraná, Brazil

Jacques Duílio Brancher, State University of Londrina - UEL

Prof. Dr., Computer Science Department, State University of Londrina, Londrina, Paraná, Brazil

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., . . . Zheng, X. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Arxiv.

Bisi, M., Pacini Panebianco, G., Polman, R., & Stagni, R. (2017). Objective assessment of movement competence in children using wearable sensors: An instrumented version of the TGMD-2 locomotor subtest. Gait & Posture, 56, 42–48. DOI: https://doi.org/10.1016/j.gaitpost.2017.04.025

Clark, J. E. (2005). From the Beginning: A Developmental Perspective on Movement and Mobility. Quest, 57, 37–45. DOI: https://doi.org/10.1080/00336297.2005.10491841

Estimativa de pose humana em tempo real no navegador com TensorFlow.js. (2018). TensorFlow.

Gallahue, D., Ozmun, J., & Goodway, J. (2013). Compreendendo o desenvolvimento motor-: bebês, crianças, adolescentes e adultos. AMGH Editora.

Gonzalez, S., Alvarez, V., & Nelson, E. (2019). Do Gross and Fine Motor Skills Differentially Contribute to Language Outcomes? A Systematic Review. Frontiers In Psychology, 10, 1–16. DOI: https://doi.org/10.3389/fpsyg.2019.02670

Henderson, S., Sugden, D., & Barnett, A. (2007). Movement assessment battery for children. (2nd. ed.). APA Psyc. DOI: https://doi.org/10.1037/t55281-000

Jo, B., & Kim, S. (2022). Comparative analysis of openpose, posenet, and movenet models for pose estimation in mobile devices. Traitement du Signal, 39(14), 119–124. DOI: https://doi.org/10.18280/ts.390111

Kiphard, E., & Schilling, V. (1974). KöperKoordinationstest für kinder KTK. Weinheim: Beltz Test.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, L. (2014). Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.). Computer Vision – ECCV 2014 (pp. 740-755, Lecture Notes in Computer Science, Vol. 8693). Springer Cham. DOI: https://doi.org/10.1007/978-3-319-10602-1_48

Manoel, E., & Connolly, K. (1995). Variability and the development of skilled actions. International Journal Of Psychophysiology, 19, 129–147. DOI: https://doi.org/10.1016/0167-8760(94)00078-S

Marques, I., Santos, C., & Medina-Papst, J. (2017). Teste de desenvolvimento motor para educação física escolar.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal Of Machine Learning Research, 12, 2825–2830.

Rosa Neto, F. (2002). Manual de avaliação motora. Artmed.

Spinosa, R. M. d. O. (2019). Demonstração digital de habilidades motoras aplicada à instrumentos de valiação do desenvolvimento motor [Doctoral dissertation, Universidade Estadual de Londrina]. Biblioteca Digital. http://www.bibliotecadigital.uel.br/document/?code=vtls000222135

Suzuki, S., Amemiya, Y., & Sato, M. (2019). Enhancement of gross-motor action recognition for children by cnn with openpose. In Institute of Electrical and Electronics Engineers, IECON 2019 [Conference]. 45th Annual Conference of The IEEE Industrial Electronics Society, Lisbon, Portugal. DOI: https://doi.org/10.1109/IECON.2019.8927828

Suzuki, S., Amemiya, Y., & Sato, M. (2020). Enhancement of child gross-motor action recognition by motional time-series images conversion. In Institute of Electrical and Electronics Engineers, IEEE/SICE International Symposium on System Integration (SII), [Symposium]. Honolulu, HI, USA. DOI: https://doi.org/10.1109/SII46433.2020.9025833

Suzuki, S., Amemiya, Y., & Sato, M. (2021). Skeletonbased visualization of poor body movements in a child’s gross-motor assessment using convolutional auto-encoder. In Institute of Electrical and Electronics Engineers, IEEE International Conference on Mechatronics (ICM) [Conference]. Kashiwa, Japan. DOI: https://doi.org/10.1109/ICM46511.2021.9385618

Ulrich, D. (2000). The test of gross motor development. PRO-ED.

Ulrich, D. (2017). Introduction to the Special Section: Evaluation of the Psychometric Properties of the TGMD-3. Journal Of Motor Learning and Development, 5, 1–4. DOI: https://doi.org/10.1123/jmld.2017-0020

Valentini, N., Zanella, L., & Webster, E. (2017). Test of Gross Motor Development—Third Edition: Establishing Content and Construct Validity for Brazilian Children. Journal of Motor Learning and Development, 5, 15–28. DOI: https://doi.org/10.1123/jmld.2016-0002

Downloads

Published

2023-10-10

How to Cite

Pilati Filho, E. L., Spinosa, R. M. de O., & Brancher, J. D. (2023). A Machine Learning Model to Automatic Assessment of Gross Motor Development in Children using Posenet. Semina: Ciências Exatas E Tecnológicas, 44, e48131. https://doi.org/10.5433/1679-0375.2023.v44.48131

Issue

Section

Computer Science

Most read articles by the same author(s)

Loading...