Reactive-Advective-Diffusive Models for the Growth of Gliomas Treated with Radiotherapy

Reactive-Advective-Diffusive Models for the Growth of Gliomas Treated with Radiotherapy

Authors

DOI:

https://doi.org/10.5433/1679-0375.2023.v44.47321

Keywords:

tumor growth, finite differences, glioblastoma, radiotherapy, mathematical models

Abstract

Gliomas are malignant brain tumors responsible for 50% of primary human brain cancer cases. They have a combination of rapid growth and invasiveness, and high fatality rates with a median survival time of one year. Mathematical models that describe its growth have helped to improve treatment.  In this paper, a combined model formed by terms of two other models known in the literature is analyzed. The combined model is a Reactive-Advective-Diffusive partial differential equation, which is solved by combining the finite difference method, the Crank-Nicolson method and the upwind method. Logistic growth is used for cell proliferation ensuring a saturation threshold for glioma growth, which is crucial to properly estimate patient survival time. The well-known linear-quadratic radiobiological model is used to describe cell death due to radiotherapy treatment. Two initial conditions are compared in the simulations, indicating the need for further studies to have a model as close as possible to reality. Simulation results are shown for four scenarios: no radiotherapy, application of a single dose, and two dose fractionation schemes.

Downloads

Download data is not yet available.

Author Biographies

Bruno da Silva Machado, Federal Fluminense University - UFF

Ms., Prog. in Comput. Modeling in Science and Tech., UFF, Volta Redonda, RJ, Brazil,

Gustavo Benitez Alvarez, Federal Fluminense University - UFF

Prof. Dr., Department of Exact Sciences, UFF, Volta Redonda, RJ, Brazil

Diomar Cesar Lobão, Federal Fluminense University - UFF

Prof. Dr., Department of Exact Sciences, UFF, Volta Redonda, RJ, Brazil, in memory

References

Aggarwal, S. K. (1985). Some numerical experiments on fisher equation. International Communications in Heat and Mass Transfer, 12(4), 417–430. https://doi.org/10.1016/07351933(85)90036-3 DOI: https://doi.org/10.1016/0735-1933(85)90036-3

Barbosa, O. X., Assis, W. L. S., Garcia, V. S., & Alvarez, G. B. (2019). Computational simulation of gliomas using stochastic methods. Pesquisa e Ensino em Ciências Exatas e da Natureza, 3, 199–215. http://dx.doi.org/10.29215/pecen.v3i2.1285 DOI: https://doi.org/10.29215/pecen.v3i2.1285

Dempsey, M. F., Condon, B. R., & Hadley, D. M. (2005). Measurement of Tumor “Size” in Recurrent Malignant Glioma: 1D, 2D, or 3D? AJNR Am J Neuroradiol., 26(4), 770–776. Hall, E. J. (2000). Radiobiology for the radiologista (5th ed). Lippincott Williams & Wilkins.

Jesus, J. C., Christo, E. S., Garcia, V. S., & Alvarez, G. B. (2014). Time series analysis for modeling of glioma growth in response to radiotherapy. IEEE Latin America Transactions, 14(3), 1532–1537. http://dx.doi.org/10.1109/TLA.2016.7459646 DOI: https://doi.org/10.1109/TLA.2016.7459646

Joiner, M. C., & van der Kogel, A. J. (2009). Basic clinical radiobiology (5th ed). Taylor & Francis Group. DOI: https://doi.org/10.1201/b15450

Leder, K., Pitter, K., Laplant, Q., Hambardzumyan, D., Ross, B. D., Chan, T. A., Holland, E. C., & Michor, F. (2014). Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell, 156(3), 603–616. http://dx.doi.org/10.1016/j.cell.2013.12.029 DOI: https://doi.org/10.1016/j.cell.2013.12.029

Machado, B. S. (2023). Estudo e análise numérica de modelos reativo-advectivo-difusivo para o crescimento de gliomas tratados com radioterapia. [Master’s thesis, Universidade Federal Fluminense].

Rockne, R., Alvord, E. C., Rockhill, J. K., & Swanson, K. R. (2009). A mathematical model for brain tumor response to radiation therapy. Journal of Mathematical Biology, 58(4-5), 561–578. http://dx.doi.org/10.1007/s00285-008-0219-6 DOI: https://doi.org/10.1007/s00285-008-0219-6

Shuman, R. M., Alvord, E. C., & Leech, R. W. (1975). The biology of childhood ependymomas. Archives of neurology, 32(11), 731–739. http://dx.doi.org/10.1001/archneur.1975.00490530053004 DOI: https://doi.org/10.1001/archneur.1975.00490530053004

Silva, J. J. (2014). Modelagem computacional aplicada ao tratamento de câncer via medicina nuclear. [Master’s thesis, Universidade Federal Fluminense].

Silva, J. J., Alvarez, G. B., Garcia, V. S., & Lobão, D. C. (2016). Modelagem Computacional do Crescimento de Glioma via Diferenças Finitas em Resposta à Radioterapia [Proccedings]. 36 Congresso Nacional de Matemática Aplicada e Computacional, Gramado. https: //doi.org/https://doi.org/10.5540/03.2017. 005.01.0327

Silva, L. M., Alvarez, G. B., Christo, E. S., Pelén Sierra, G. A., & Garcia, V. S. (2021). Time series forecasting using arima for modeling of glioma growth in response to radiotherapy. Semina: Ciências Exatas e Tecnológicas, 42(1), 3–12. http://dx.doi.org/10.5433/16790375.2021v42n1p3 DOI: https://doi.org/10.5433/1679-0375.2021v42n1p3

Souza, E. B., Alvarez, G. B., & Neves, T. A. (2015). Estudo sobre otimização da radioterapia em pacientes com gliomas. [Proccedings]. 47 Simpósio Brasileiro de Pesquisa Operacional, Porto de Galinhas.

Stein, A., Demuth, T., Mobley, D., Berens, M., & Sander, L. (2007). A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophysical journal, 92, 356–65. https://doi.org/10.1529/biophysj.106.093468 DOI: https://doi.org/10.1529/biophysj.106.093468

Swanson, K. R., Bridge, C., Murray, J. D., & Alvord, E. C. (2003). Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion. Journal of the Neurological Sciences, 216(1), 1–10. https://doi.org/10.1016/j.jns.2003.06.001 DOI: https://doi.org/10.1016/j.jns.2003.06.001

Downloads

Published

2023-06-22

How to Cite

Machado, B. da S., Alvarez, G. B., & Cesar Lobão, D. (2023). Reactive-Advective-Diffusive Models for the Growth of Gliomas Treated with Radiotherapy. Semina: Ciências Exatas E Tecnológicas, 44, e47321. https://doi.org/10.5433/1679-0375.2023.v44.47321

Issue

Section

Mathematics

Most read articles by the same author(s)

Loading...