Time series forecasting using ARIMA for modeling of glioma growth in response to radiotherapy

Time series forecasting using ARIMA for modeling of glioma growth in response to radiotherapy

Authors

DOI:

https://doi.org/10.5433/1679-0375.2021v42n1p3

Keywords:

Mathematical models, Tumor growth, Glioblastoma, Time series forecast, Radiotherapy

Abstract

In present days, the growing number of people suffering from cancer has been a major cause for concern worldwide. Glioblastoma in particular, are primary tumors in glial cells located in the central nervous system. Because of this sensitive location, mathematical models have been studied and developed as alternative tools for analyzing tumor growth rates, assisting on the decision-making process for treatment dosage, without exposing the patient’s life. This paper presents two time series models to estimate the growth rate of glioblastoma in response to ionizing radiotherapy treatment. The results obtained indicate that the proposed time series methods attain predictions with a Mean Absolute Percentual Error (MAPE) of approximately 1% to 4%, and simulations show that the Autoregressive Integrated Moving Average (ARIMA) method surpasses the Holt method based on the Mean Square Error (MSE) and MAPE values obtained. Furthermore, the results show that the time series method is applicable to data from two different mathematical models for glioblastoma growth.

Downloads

Download data is not yet available.

Author Biographies

Larissa Miguez da Silva, Universidade Federal Fluminense - UFF

PhD student at the National Laboratory of Scientific Computing - LNCC.

Gustavo Benitez Alvarez, Universidade Federal Fluminense - UFF

PhD in Nuclear Engineering from the Federal University of Rio de Janeiro. Associate Professor at the Department of Exact Sciences at UFF

Eliane da Silva Christo, Universidade Federal Fluminense - UFF

PhD in Electrical Engineering from the Pontifical Catholic University of Rio de Janeiro. Professor and coordinator of the Professional Master's Program in Production Engineering at Universidade Federal Fluminense

Gerardo Amado Pelén Sierra, Universidade Federal Fluminense - UFF

Master in Computational Modeling in Science and Technology, Federal Fluminense University, Volta Redonda, RJ, Brazil,

Vanessa da Silva Garcia, Universidade Federal Fluminense - UFF

PhD in Nuclear Engineering from the Nuclear Engineering Program (UFRJ). Postdoctoral degree in Computational Modeling by the Postgraduate Program in Computational Modeling in Science and Technology (MCCT / EEIMVR / UFF). Professor at UFF

References

BARBOSA, O. X.; ASSIS, W. L. S.; GARCIA, V. S.; ALVAREZ, G. B. Computational simulation of gliomas using stochastic methods. Pesquisa e Ensino em Ciências Exatas e da Natureza, Cajazeiras, v. 3, p. 199–215, 2019.

BARNETT, G. H. High-grade gliomas: diagnosis and treatment. New Jersey: Humana Press, 2007.

BELLOMO, N.; CHAPLAIN, M.; ANGELIS, E. Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy. Boston: Birkhäuser, 2008.

BOX, G. E.; JENKINS, G. M.; REINSEL, G. C.; LJUNG, G. M. Time series analysis: forecasting and control. 5th ed. New Jersey: John Wiley & Sons, 2015.

CANCER INSTITUTE NSW. What is cancer. Alexandria: NSW, 2018. Available from: https://www.cancerinstitute.org.au/understandingcancer/ what-is-cancer. Access in: jun. 2018.

DOLGIN, E. The mathematician versus the malignancy. Nature Medicine, New York, v. 20, p. 460–463, 2014.

DOMINGOS, S. D. O.; OLIVEIRA, J. F. D.; MATTOS NETO, P. S. G. An intelligent hybridization of arima with machine learning models for time series forecasting. Knowledge- Based Systems, Netherlands, v. 175, p. 72–86, 2019.

FERNÁNDEZ-CARA, E.;PROUVÉE, L. Optimal control of mathematical models for the radiotherapy of gliomas: the scalar case. Computational and Applied Mathematics, Petrópolis, v. 37, p. 745–762, 2018.

HOLLAND, E. C. Glioblastoma multiforme: the terminator. Proceedings of the National Academy of Sciences, Washington, v. 97, n. 12, p. 6242–6244, 2000.

HYNDMAN, R.; KOEHLER, A. B.; ORD, J. K.; SNYDER, R. D. Forecasting with exponential smoothing: the state space approach. Berlin: Springer, 2008.

HYNDMAN, R. J.; AKRAM, M.; ARCHIBALD, B. C. The admissible parameter space for exponential smoothing models. Annals of the Institute of Statistical Mathematics, Tokyo, v. 60, n. 2, p. 407–426, 2008.

HYNDMAN, R. J.; KOEHLER, A. B.; SNYDER, R. D.; GROSE, S. A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, Amsterdam, v. 18, n. 3, p. 439–454, 2002.

IARC - INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. França: IARC, 2018. Available from: https://www.iarc.fr/. Access in: dec. 2018.

INCA - INSTITUTO NACIONAL DE CÂNCER. Estimativas 2018: Incidência de câncer no Brasil. Rio de Janeiro: INCA, 2018. Available from: . Access in: jun. 2018.

JESUS, J. C. D.; CHRISTO, E. S.; GARCIA, V. S.; ALVAREZ, G. B. Time series analysis for modeling of glioma growth in response to radiotherapy. IEEE Latin America Transactions, Canadá, v. 14, n. 3, p. 1532–1537, 2014.

LEDER, K. et al. Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell, Cambridge, v. 156, n. 3, p. 603–616, 2014.

MONTGOMERY, D. C.; JENNINGS, C. L.; KULAHCI, M. C. Introduction to time series analysis and forecasting. 2th ed. New Jersey: John Wiley & Sons, 2015.

MORETTIN, P. A.; TOLOI, C. M. C. Modelos para previsão de séries temporais. Rio de Janeiro: IMPA, 1981. v. 1.

MURRAY, J. D. Vignettes from the field of mathematical biology: the application of mathematics to biology and medicine. Interface Focus, London, v. 2, n. 4, p. 397–406, 2012.

ROCKNE, R.; ALVORD, E. C.; ROCKHILL, J. K.; SWANSON, K. R. A mathematical model for brain tumor response to radiation therapy. Journal of Mathematical Biology, New York, v. 58, n. 4/5, p. 561–578, 2008.

SILVA, J. J. da; ALVAREZ, G. B.; GARCIA, V. S.; LOBÃO, D. C. Modelagem computacional do crescimento de glioma via diferenças finitas em resposta à radioterapia. In: CONGRESSO NACIONAL DE MATEMÁTICA APLICADA E COMPUTACIONAL, 36, 2016, Gramado. Proccedings [...]. Gramado: Sbmac Publishing, 2016. p. 1-7.

SOUZA, E. B.; NEVES, T. A.; ALVAREZ, G. B. Estudo sobre otimização da radioterapia em pacientes com gliomas. In: SIMPOSIO BRASILEIRO DE PESQUISA OPERACIONAL, 47., 2015, Porto de Galinhas. Proccedings [...]. Porto de Galinhas: Sbpo Publishing, 2015. p. 1-12.

SWANSON, K. R.; ALVORD JUNIOR, E. C.; MURRAY, J. D. A quantitative model for differential motility of gliomas in gray and white matter. Cell proliferation, Cambridge, v. 33, n. 5, p. 317– 329, 2000.

TEIXEIRA, J. G.; IKEHARA, H. C.; BRANDT, S. A. Estrutura de oferta e desenvolvimento agrícola: um modelo de equações recursivas. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 2, n. 8, p. 183–188, 1981.

WALKER, M. D.; STRIKE, T. A.; SHELINE, G. E. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. International Journal of Radiation Oncology, Biology, Physics, New York, v. 5, n. 10, p. 1725–1731, 1979.

ZHANG, G. P. Time series forecasting using a hybrid arima and neural network model. Neurocomputing, Amsterdam, v. 50, p. 159–175, 2003.

Downloads

Published

2021-04-07

How to Cite

Silva, L. M. da, Alvarez, G. B., Christo, E. da S., Pelén Sierra, G. A., & Garcia, V. da S. (2021). Time series forecasting using ARIMA for modeling of glioma growth in response to radiotherapy. Semina: Ciências Exatas E Tecnológicas, 42(1), 3–12. https://doi.org/10.5433/1679-0375.2021v42n1p3

Issue

Section

Original Article

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.

Loading...