Use of alternative additives for broiler chickens challenged with Eimeria vaccine and Clostridium perfringens

Authors

DOI:

https://doi.org/10.5433/1679-0359.2024v45n4p1251

Keywords:

Necrotic enteritis, Yeasts, Intestinal permeability.

Abstract

The objective of this study was to evaluate the use of alternative additives in diets for broiler chickens challenged with Eimeria vaccine and Clostridium perfringens. A total of 600 broiler chicks were allocated to five treatments in a completely randomized design with six replicates and 20 birds per experimental unit. The treatments were as follows: negative control - basal diet without a growth promoter; positive control - basal diet with the inclusion of 50 g t-1 of 20% avilamycin; diet A - basal diet plus the inclusion of 100 g t-1 of a product based on Macleaya cordata extract; diet B - basal diet plus the inclusion of 1000 g t-1 of a product based on sweet chestnut (Castanea sativa) and red quebracho (Schinopsis lorentzii); and diet C - basal diet plus the inclusion of 100 g t-1 of a product based on prebiotics from Pichia yeast, glutamine, and aluminosilicate. All birds were individually challenged at four days of age with 0.6 mL of the vaccine for Eimeria spp., and at seven and ten days of age with 0.5 mL of Clostridium perfringens. The evaluated parameters included performance, intestinal health, blood parameters, litter quality, and carcass and cut yields. The use of prebiotics (product C) improved weight gain (P<0.05) in the periods from one to 21 days and one to 42 days of age. There was a statistical difference (P<0.05) in the intestinal health index, with the use of product C leading to a lower total lesion score compared to other treatments at 28 days of age. The negative control treatment demonstrated lower intestinal permeability compared to the other treatments (P<0.05). Regarding serum parameters at 14 days of age, uric acid concentrations were higher (P<0.05) in the birds in the negative control group compared to those in the positive control group. The concentration of lactate dehydrogenase was higher (P<0.05) in birds fed products B and C compared to those fed the positive and negative control treatments. Moreover, the concentration of total proteins was higher (P<0.05) in the blood of birds fed product C compared to product A. Cholesterol concentrations at 42 days were lowest (P<0.05) in the treatment with product B. Uric acid concentrations were highest (P>0.05) in the birds receiving additive B and lowest in the group of birds fed product A. Products B and C may serve as substitutes for antibiotics in birds challenged with Eimeria vaccine and Clostridium perfringens.

Author Biographies

Gabrieli Toniazzo, Universidade Estadual do Oeste do Paraná

Graduate Student in Animal Science, Universidade Estadual do Oeste do Paraná, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Gabriel Natã Comin , Universidade Estadual do Oeste do Paraná

Graduate Student in Animal Science, Universidade Estadual do Oeste do Paraná, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Matheus Leandro dos Reis Maia, Universidade Estadual do Oeste do Paraná

Graduate Student in Animal Science, Universidade Estadual do Oeste do Paraná, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Guilherme Luis Silva Tesser, Universidade Estadual do Oeste do Paraná

Postgraduate Student in Animal Science, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Thiago dos Santos Andrade, Universidade Estadual do Oeste do Paraná

Postgraduate Student in Animal Science, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Gabriele Luiza Freitag Tischer, Universidade Estadual do Oeste do Paraná

Postgraduate Student in Animal Science, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Nilton Rohloff Junior, Universidade Estadual do Oeste do Paraná

Prof. Dr., Animal Science, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Cinthia Eyng, Universidade Estadual do Oeste do Paraná

Profa. Dra., Zootecnia, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

Ricardo Vianna Nunes, Universidade Estadual do Oeste do Paraná

Prof. Dr., Animal Science, UNIOESTE, Marechal Cândido Rondon, PR, Brazil.

References

Abudabos, A. M., Alyemni, A. H., Dafallah, Y. M., & Khan, R. U. (2016). The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environmental Science and Pollution Research, 23(23), 24151-24157. doi: 10.1007/s11356-016-7665-2

Alexandrino, S. L. S. A., Costa, T. F., Silva, N. G. D., Abreu, J. M., Silva, N. F., Sampaio, S. A., Christofoli, M., Cruz, L. C. F., Moura, G. F., Faria, P. P., & Minafra, C. S. (2020). Microbiota intestinal e os fatores que influenciam na avicultura. Research, Society and Development, 9(6), e87963098. doi: 10.33448/rsd-v9i6.3098

Al-Khalaifah, H. S. (2018). Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poultry Science, 97(11), 3807-3815. doi: 10.3382/ps/pey160.

Almeida Filho, J. A., Gomes, F. A., Freitas, H. J., Silva Malavazi, P., Malavazzi, P. F. N. S., Sandra, I. O., Bezerra, M. B., & Reis, D. B. V. (2019). Vitamina C e E na alimentação de frangos de corte industrial criados em ambiente com desafio permanente na Amazônia Ocidental. Archives of Veterinary Science and Zoology, 22(2), 43-5. doi: 10.25110/arqvet.v22i2.6771

Ariza, C., Ortiz, R. E., & Tellez, G. A. (2018). Efeito de dois quimiotipos de óleo essencial de orégano no desempenho do frango, equilíbrio de nutrientes e peroxidação lipídica da carne de peito durante armazenamento. Ciência Animal Brasileira, 19(19), e47819. doi: 10.1590/1809-6891v19e-47819

Attree, E., Sanchez-Arsuaga, G., Jones, M., Xia, D., Marugan-Hernandez, V., Blake, D., & Tomley, F. (2021).Controlling the causative agents of coccidiosis in domestic chickens; an eye on the past and considerations for the future. CABI Agriculture and Bioscience, 2(1), 1-16. doi: 10.1186/s43170-021-00056-5

Baxter, M. F., Dridi, S., Koltes, D. A., Latorre, J. D., Bottje, W. G., Greene, E. S., Bickler, S. W., Kim, J. H., Merino-Guzman, R., Hernandez-Velasco, X., Anthony, N. B., Hargis, B. M., & Tellez-Isaias, G. (2019). Evaluation of intestinal permeability and liver bacterial translocation in two modern broilers and their jungle fowl ancestor. Frontiers in Genetics, 10(480), 1-5. doi: 10.3389/fgene.2019.00480

Bosetti, G. E., Griebler, L., Aniecevski, E., Facchi, C. S., Baggio, C., Rossatto, G., Leite, F., Valentini, F. V., Santo, A. D., Rossatto, G., Leite, F., Valentini, F. D., Santo, A., Pagnussat, T. H., Petrolli, T. G., & Boiago, M. M. (2020). Microencapsulated carvacrol and cinnamaldehyde replace growth-promoting antibiotics: effect on performance and meat quality in broiler chickens. Anais da Academia Brasileira de Ciências, 92(3), e20200343. doi: 10.1590/0001-3765202020200343

Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poultry Science, 97(3), 1006-1021. doi: 10.3382/ps/pex359

Cruz, L. C. F., Costa, T. F., Sampaio, S. A., Dias da Silva, N. G., Abreu, J. M., Borges, K. F., Sales, G. M., Alexandrino, S. L. de S. A., Santos, F. R., & Minafra, C. S. (2022). Microbioma intestinal de aves e sua importância. Research, Society and Development, 11(2), e22411225583. doi: 10.33448/rsd-v11i2.25583

De Cesare, A., Sirri, F., Manfreda, G., Moniaci, P., Giardini, A., Zampiga, M., & Meluzzi, A. (2017). Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. Plos One, 12(5), 1-21. doi: 10.1371/journal.pone.0176309

Diaz, T. G., Branco, A. F., Jacovaci, F. A., Jobim, C. C., Daniel, J. L. P., Bueno, A. V. I., & Ribeiro, M. G. (2018). Use of live yeast and mannan-oligosaccharides ingrain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. Plos One, 13(11), 1-15. doi: 10.1371/journal.pone 0207127

Dittoe, D. K., Ricke, S. C., & Kiess, A. S. (2018). Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science, 5(216), 1-12. doi: 10.3389/fvets.2018.00216

Fernandes, J. I. M., Kosmann, R. C., Viott, A. M., Simões, R. S., Ribeiro, M. V., & Rorig, A. (2017). Avaliação de extratos de plantas sobre a resposta imune, o desempenho produtivo e a morfometria intestinal de frangos de corte desafiados com Eimeria spp. Revista Brasileira de Saúde e Produção Animal, 18(1), 127-139. doi: 10.1590/S1519-99402017000100012

Galipeau, H. J., & Verdu, E. F. (2016). The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterology and Motility, 28(7), 957-965. doi: 10.1111/nmo.12871

Genova, J. L., Rodrigues, R. B., Martins, J. S., Uczay, M., & Henriques, J. K. S. (2020). Própolis e pólen apícola na nutrição de animais não ruminantes. Arquivos de Pecuária, 69(265), 124-131. doi: 10.21071/az.v69i265.5048

Gonçalves, N. S., Komiyama, C. M., Lima, J. F. P., Moraes, M. D. G., Savegnago, F. B., Mezzalira, C., Jr., Rosa, C. C. B., & Staub, L. (2019). Qualidade da cama de frango e alternativa de acidificação como tratamento Native, 7(6), 828-834. doi: 10.31413/nativa.v7i6.7041

González-González, M., Díaz-Zepeda, C., Eyzaguirre-Velásquez, J., González-Arancibia, C., Bravo, J. A., & Julio-Pieper, M. (2019). Investigating gut permeability in animal models of disease. Frontiers in Physiology, 9(1962), 1-10. doi: 10.3389/fphys.2018.01962

Guardabassi, L., & Prescott, J. F. (2015). Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Veterinary Clinics: Small Animal Practice, 45(2), 361-376. doi: 10.1016/j.cvsm. 2014.11.005

Hofacre, C. L., Berghaus, R. D., Jalukar, S., Mathis, G. F., & Smith, J. A. (2018). Effect of a yeast cell wall preparation on cecal and ovarian colonization with Salmonella Enteritidis in commercial layers. Journal of Applied Poultry Research, 27(4), 453-460. doi: 10.1371/journal.pone.0232088

Jacquier, V., Nelson, A., Jlali, M., Rhayat, L., Brinch, K. S., & Devillard, E. (2019). Bacillus subtilis 29784 induces a shift in broiler intestinal microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poultry Science, 98(6), 2548-2554. doi: 10.3382/ps/pey602

Kouhounde, S., Adéoti, K., Mounir, M., Giusti, A., Refinetti, P., Otu, A., Efa, E., Ebenso, B., Adetimirin, O. V., Barceló, M. J., Thiare, O., Rabetafika, N. S., & Rezafindralambo, L. H. (2022). Applications of probiotic-based multicomponents to human, animal and ecosystem health: concepts, methodologies, and action mechanisms. Microorganisms, 10(9), 1-31. doi: 10.3390/microorganisms10091700

Kraieski, A. L., Hayashi, R. M., Sanches, A., Almeida, G. C., & Santin, E. (2017). Effect of aflatoxin experimental ingestion and Eimeira vaccine challenges on intestinal histopathology and immune cellular dynamic of broilers: applying an Intestinal Health Index. Poultry Science, 96(5), 1078-1087. doi: 10.3382/ps/pew397

Kuttappan, V. A., Berghman, L. R., Vicuna, E. A., Latorre, J. D., Menconi, A., Wolchok, J. D., Wolfenden, A. D., Faulkner, O. B., Tellez, G., Hargis, B. M., & Bielke, L. R. (2015). Poultry enteric inflammation model with dextran sodium sulfate mediated chemical induction and feed restriction in broilers. Poultry Science, 94(6), 1220-1226. doi: 10.3382/ps/pev114

Leite, F., Pagnussatt, H., Santo, A. D., Valentini, F. D. A., Talian, L. E., Lima, M., Aniecevski, E., Zaccaron, G., Galli, G. M., Tavernari, F. C., Silva, A. S., & Petrolli, T. G. (2021). Avaliação do uso de fitogênicos isolados ou em combinação com leveduras como substituto de antibióticos em frangos de corte. Research, Society and Development, 10(6), e4510615384. doi: 10.33448/rsd-v10i6.15384

Li, Z., Zhang, B., Zhu, W., Lin, Y., Chen, J., Zhu, F., & Guo, Y. (2023). Effects of nonantibiotic growth promoter combinations on growth performance, nutrient utilization, digestive enzymes, intestinal morphology, and cecal microflora of broilers. Plos One, 18(3), e0279950. doi: 10.1371/journal.pone.0279950

Liao, X., Shao, Y., Sun, G., Yang, Y., Zhang. L., Guo, Y., Luo, X., & Lu, L. (2020). The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poultry Science, 99(11), 5883-5895. doi: 10.1016/j.psj.2020.08.033

Liu, J., Liu, L., Li, L., Tian, D., Li, W., Xu, L., Yan, R., Li, X., & Song, X. (2018). Protective immunity induced by Eimeria common antigen 14-3-3 against Eimeria tenella, Eimeria acervulina and Eimeria maxima. BMC Veterinary Research, 14(1), 1-11. doi: 10.1186/s12917-018-1665-z

Liu, J., Teng, P., Kim, K. W., & Applegate. J. T. (2021a). Assay considerations for fluorescein isothiocyanate-dextran (FITC-d): an indicator of intestinal permeability in broiler chickens. Poultry Science, 100(7), e1012022021. doi: 10.1016/j.psj.2021.101202

Liu, L., Li, Q., Yang, Y., & Guo, A. (2021b). Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 8(18), e 736739. doi: 10.3389/fvets.2021.736739

Mátis, G., Mackei, M., Boomsma, B., Fébel, H., Nadolna, K., Szymanski, L., Edwards, E. J., Neogrády, Z., & Kozlwski, K. (2022). Dietary protected butyrate supplementation of broilers modulates intestinal tight junction proteins and stimulates endogenous production of short chain fatty acids in the caecum. Animals, 12(15), 1-18. doi: 10.3390/ani12151940

Michalska, K., Gasek, M., Sokól, R., Murawska, D., Mikiewicz, M., & Chldowska, A. (2021). Effective microorganisms em improve internal organ morphology intestinal morphometry and sérum biochemical activity in japanese quails under Clostridium perfringens challenge. Moleculer, 26(9), 3786. doi: 10.3390/molecules26092786

Morais, A. M. V. B., Melo, A. M. B., Martins, A. S., Camargo, J. G. A., Morais, L. V. B., Gomes, D. M. S., Andrade, G. C., Costa, J. M., Nascimento, P., Silva, L., & Minafra, C. S. (2023). Perfil bioquímico do sangue de frangos de corte alimentados com orégano, canela e urucum. International Seven Journal of Multidisciplinary, 2(1), 95-103. doi: 10.56238/isevmjv2n1-005

Morales-Mena, A., Martinez-Gonzalez, S. K. D., Teague, L. E., Graham, R., Senas Cuesta, C. N., Vuong, H., Lester, D., Hernandez-Patlan, B., Solis-Cruz, B., Fuente, M. X., Hernandez-Velasco, B. M., Hargis, G., & Tellez I. (2020). Assessment of fermented soybean meal on Salmonella Typhimurium infection in neonatal turkey poults. Animals, 10(10), 1849. doi: 10.3390/ani10101849

Muro, E. M., Pelícia, V. C., Vercese, F., Souza, I. M. G. P., Pimenta, G. E. M., Oliveira, R. S. S. G., & Sartori, J. R. (2015). Phytogenic additives and glutamine plus glutamic acid in the diet of chickens challenged with coccidiosis. Agrarian, 8(29), 304-311. doi: 10.30612/agrarian.v8i29.3378

Nunes, R. V., Broch, J., Wachholz, L., Souza, C., Damasceno, J. L., Oxford, J. H., Bloxham, D. J., Billard, L., & Pesti, G. M. (2018). Choosing sample sizes for various blood parameters of broiler chickens with normal and non-normal observations. Poultry Science, 97(10), 3746-3754. doi: 10.3382/ps/pey217

Pascual, A., Pauletto, M., Giantin, M., Radaelli, G., Ballarin, C., Birolo, M., Zomeño, C., Dacasto, M., Bortoletti, M., Vascellari, M., Xiccato, G., & Trocino, A. (2020). Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens. Journal of Animal Science and Biotechnology, 11(40), 1-11. doi: 10.1186/s40104-020-00448-z.

Ramos, L. D. S. N., Lopes, J. B., Ribeiro, M. N., Silva, F. E. S., Merval, R. R., & Albuquerque, D. M. N. (2014). Aditivos alternativos a antibióticos para frangos de corte no período de 22 a 42 dias de idade. Revista Brasileira de Saúde e Produção Animal, 15(4), 897-906. https://www.scielo.br/j/rbspa/a/KRGSQR9fFr6c7Rzmg6mxW5j/

Reis, T. L., & Vieites, F. M. (2019). Antibiotic, prebiotic, probiotic, and synbiotic in diets for broiler chickens and laying hens. Animal Science, 29(3), 133-147.

Rezende, M. S., Silva, P. L., Guimarães, E. C., Lellis, C. G., & Mundim, A. V. (2019). Physiological variations, influence of age and sex on the blood biochemical profile of heavy broiler chicken breeders during the rearing phase. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 71(5), 1649-1658. doi: 10.1590/1678-4162-10661

Ritzi, M. M., Abdel-Rahman, W., Van-Heerden, K., Mohnl, M., Barret, N. W., & Dalloul, A. R. (2016). Combination of probiotics and coccidiosis vaccine enhances protection against an Eimeria challenge. Veterinary Research, 47(1), 1-8. doi: 10.1186/s13567-016-0397-y

Robert, H. D., Payros, P., Pinton, V., Théodorou, M., Mercier-Bonin, M., & Oswald, I. P. (2017). Impact of mycotoxins on the intestine: are mucus and microbiota new targets?. Journal of Toxicology and Environmental Health, 20(5), 249-275. doi: 10.1080/10937404.2017.1326071

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., Saraiva, A., Teixeira, M. L., Rodrigues, P. B., Oliveira, R. F., Barreto, S. L. T., & Brito, C. O. (2017). Brazilian tables for poultry and swine: composition of foods and nutritional requirements. Department of Animal Science/UFV.

Sakomura, N. K., & Rostagno, H. S. (2016). Research methods in monogastric nutrition (2nd ed.). Funep.

Statistical Analysis System Institute (2022). SAS University edition: installation guide for Windows. SAS Institute.

Schmidt, N. S., & Silva, C. L. (2018). Pesquisa e desenvolvimento na cadeia produtiva de frangos de corte no Brasil. Revisão de Economia Rural e Sociologia. 56(3), 467-482. doi: 10.1590/1234-56781806-94790560307

Silva, J. P., Orso, C., Stefanello, T. B., Carnial, K. M., & Ribeiro, A. M. L. (2022). Coccidiose em frangos de corte. Open Science Research, 5(1), 135-154. doi: 10.37885/220709614

Siyal, F., Babazadeh, D., Wang, C., Arain, M., Saeed, M., Ayasan, T., Zhanf, L., & Wang, T. (2017). Emulsifiers in the poultry industry. World's Poultry Science Journal, 73(3), 611-620. doi: 10.1017/S0043933917000502

Soutter, F., Werling, D., Tomley, F. M., & Blake, D. P. (2020). Poultry coccidiosis: design and interpretation of vaccine studies. Frontiers in Veterinary Science, 7(101), 1-12. doi: 10.3389/fvets.2020.00101

Toledo, J., Paulino, M. T. F., Oliveira, E. M. O., Grieser, D. O., & Toledo, J. B. (2019). Criação de frangos de corte e acondicionamento térmico em suas instalações: Revisão PubVet, 13(2), 1-14. doi: 10.31533/pubvet.v13n3a280.1-14

Volynets, V., Reichold, A., Bardos, G., Rings, A., Bleich, A., & Bischoff, S. C. (2016). Assessment of the intestinal barrier with five different permeability tests in healthy C57BL/6J and BALB/cJ mice. Digestive Diseases and Sciences, 61(3), 737-746. doi: 10.1007/s10620-015-3935-y

Wajiha, A. Q. N., & Afridi, R. (2018). Comparative analysis of egg adapted vaccines and salinomycin against coccidiosis in chicks. Microbial Pathogenesis, 123(1), 454-460. doi: 10.1016/j.micpath.2018.08.005

Wang, X., Farnell, Y. Z., Peebles, E. D., Kiess, A. S., Wamsley, K. G., & Zhai, W. (2016). Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poultry Science, 95(6), 1332-1340. doi: 10.3382/ps/pew030

Zhai, H., Liu, H., Wang, S., Wu, J., & Kluenter, A. M. (2018). Potential of essential oils for poultry and pigs A review. Animal Nutrition, 4(2), 179-186. doi: 10.1016/j.aninu.2018.01.007

Downloads

Published

2024-07-31

How to Cite

Toniazzo, G., Comin , G. N., Sartor, H., Maia, M. L. dos R., Tesser, G. L. S., Andrade, T. dos S., … Nunes, R. V. (2024). Use of alternative additives for broiler chickens challenged with Eimeria vaccine and Clostridium perfringens. Semina: Ciências Agrárias, 45(4), 1251–1274. https://doi.org/10.5433/1679-0359.2024v45n4p1251

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 > >> 

Similar Articles

You may also start an advanced similarity search for this article.