Parameters associated with the resistance of coffee genotypes to low temperatures

Authors

DOI:

https://doi.org/10.5433/1679-0359.2022v43n5p2293

Keywords:

Coffea racemosa, Frost, Cold resistance, Visual assessment, Physiological analysis

Abstract

Physiological damage to coffee plants caused by cold stress can vary according to the intensity, exposure time, genotype, age, and nutritional status of the plants. The objective of this study was to evaluate the foliar, physiological, and biochemical damages resulting from the exposure of coffee seedlings to negative temperatures and, thus, determine the minimum lethal temperature for genotypes that could be used to study coffee plants with resistance to cold. Four progenies of Coffea arabica with introgression of Coffea racemosa, three progenies of C. arabica with introgression of Coffea liberica, and C. racemosa were evaluated, in addition to the cultivars C. arabica Mundo Novo IAC 376-4 and Catuaí Vermelho IAC 81, which were used as susceptible controls. The plants were subjected to temperatures of -2°C, -3°C, -4°C, and -5°C in a climatic growth chamber. The foliar and physiological damage of the seedlings was evaluated using qualitative (visual criterion) and quantitative methods (photosynthesis, ratio between the variable and maximum fluorescence of photosystem II [Fv/Fm], electrical conductivity of the imbibition solution of leaf disks, and protein content). The experimental design was completely randomized in a 5 × 10 factorial scheme, with five temperatures, 10 genotypes, and 4 replications. Data were subjected to analysis of variance, and means were compared using the Scott-Knott mean cluster test at 5% significance. Pearson’s correlation was performed between the means of the genotypes. Visual damage was detected at -3°C, and when correlated with the other physiological parameters, resistance was observed only in C. racemosa. Temperatures between -4°C and -5°C were the most suitable for testing cold resistance in coffee progenies.

Metrics

Metrics Loading ...

Author Biographies

Juliandra Rodrigues Rosisca, Universidade Estadual de Londrina

Dra. em Agronomia, Universidade Estadual de Londrina, UEL, Londrina, PR, Brasil.

Getúlio Takashi Nagashima, Instituto de Desenvolvimento Rural do Paraná

Researcher, PhD, Instituto de Desenvolvimento Rural do Paraná, IAPAR-EMATER, Londrina, PR, Brasil.

Carolina Maria Gaspar de Oliveira, Instituto de Desenvolvimento Rural do Paraná

Researcher, PhD, Instituto de Desenvolvimento Rural do Paraná, IAPAR-EMATER, Londrina, PR, Brasil.

Heverly Morais, Instituto de Desenvolvimento Rural do Paraná

Researcher, PhD, Instituto de Desenvolvimento Rural do Paraná, IAPAR-EMATER, Londrina, PR, Brasil.

Gustavo Hiroshi Sera, Instituto de Desenvolvimento Rural do Paraná

Researcher, PhD, Instituto de Desenvolvimento Rural do Paraná, IAPAR-EMATER, Londrina, PR, Brasil.

Paulo Henrique Caramori, Instituto de Desenvolvimento Rural do Paraná

Researcher, PhD, Instituto de Desenvolvimento Rural do Paraná, IAPAR-EMATER, Londrina, PR, Brasil.

 

Marcelo Augusto de Aguiar e Silva, Universidade Estadual de Londrina

Prof. Dr., Departament of Agronomy, UEL, Londrina, PR, Brasil.

References

Batista-Santos, P., Lidon, F. C., Fortunato, A., Leitão, A. E., Lopes, E. F., Partelli, F. L., Ribeiro, A. I., & Ramalho, J. C. (2011). The impact of cold on photosynthesis in genotypes of coffea spp. photosystem sensitivity, photoprotective mechanisms and gene expression. Journal of Plant Physiology, 168(1), 792-806. doi: 10.1016/j.jplph.2010.11.013 DOI: https://doi.org/10.1016/j.jplph.2010.11.013

Bertamini, M., Zulini, L., Muthuchelian, K., & Nedunchezhian, N. (2007). Low night temperature effects on photosynthetic performance on two grapevine genotypes. Biologia Plantarum, 51(2), 381-385. doi: 10.1007/s10535-007-0080-2 DOI: https://doi.org/10.1007/s10535-007-0080-2

Björkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. doi: 10.1007/BF00402983 DOI: https://doi.org/10.1007/BF00402983

Borges, L. C., & Ferreira, D. F. (2003). Poder e taxas de erro tipo I dos testes Scott-Knott, Tukey e Student-Newman-Keuls sob distribuições normal e não normais dos resíduos. Revista de Matemática e Estatística, 21(1), 67-83. https://www.scopus.com/record/display.uri?eid=2-s2.0-70350765531&origin=inward&tx Gid=777134d9c841112cb06b18160df9a036

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi: 10.1016/ 0003-2697(76)90527-3 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2015). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1), 89-101. doi: 10.1007/s10584-014-1306-x DOI: https://doi.org/10.1007/s10584-014-1306-x

Caramori, P. H., & Manetti, J., Fº. (2002). Effect of leaf water potential on cold tolerance of Coffea arabica. Brazilian Archives of Biology and Technology, 45(4), 439-443. doi: 10.1590/S1516-89132002000600006 DOI: https://doi.org/10.1590/S1516-89132002000600006

Craparo, A. C. W., Van Asten, P. J., Läderach, P., Jassogne, L. T., & Grab, S. W. (2015). Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207(15), 1-10. doi: 10.1016/j.agrformet.2015.03.005 DOI: https://doi.org/10.1016/j.agrformet.2015.03.005

Douce, R., & Heldt, H. W. (2000). Photorespiration. In R. C. Leegood, T. D. Sharkey, & S. Von Caemmerer (Eds.), Photosynthesis. Advances in photosynthesis and respiration (vol. 9, p. 115-136). Dordrecht. doi: 10.1007/0-306-48137-5_5 DOI: https://doi.org/10.1007/0-306-48137-5_5

Fortunato, A. S., Lidon, F. C., Batista-Santos, P., Leitão, A. E., Pais, I. P., Ribeiro, A. I., & Ramalho, J. C. (2010). Biochemical and molecular characterization of the antioxidative system of coffea sp. under cold conditions in genotypes with contrasting tolerance. Journal of Plant Physiology, 167(1), 333-342. doi: 10.1016/j.jplph.2009.10.013 DOI: https://doi.org/10.1016/j.jplph.2009.10.013

Fürtauer, L., Weiszmann, J., Weckwerth, W., & Nägele, T. (2019). Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences, 20(21), 5411. doi: 10.3390/ijms20215411 DOI: https://doi.org/10.3390/ijms20215411

Geromel, C., Ferreira, L. P., Bottcher, A., Pot, D., Pereira, L. F. P., & Leroy, T. (2008). Sucrose metabolism during fruit development in Coffea racemosa. Annals of Applied Biology, 152(2), 179-187. doi: 10.1111/j. 1744-7348.2007.00199.x DOI: https://doi.org/10.1111/j.1744-7348.2007.00199.x

Guy, C., & Haskell, D. (1988). Detection of polypeptides associated with the cold acclimation process in spinach. Electrophoresis, 9(11), 787-796. doi: 10.1002/elps.1150091115 DOI: https://doi.org/10.1002/elps.1150091115

Hendrickson, L., Ball, M. C., Wood, J. T., Chow, W. S., & Furbank, R. T. (2004). Low temperature effects on photosynthesis and growth of grapevine. Plant, Cell & Environment, 27(7), 795-809. doi: 10.1111/j.1365-3040.2004.01184.x DOI: https://doi.org/10.1111/j.1365-3040.2004.01184.x

Intergovernmental Panel on Climate Change (2014). Climate change 2014: mitigation of climate. Summary for policymakers and Technical Summary. IPCC. https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ WGIIIAR5_SPM_TS_Volume.pdf DOI: https://doi.org/10.1017/CBO9781107415416

Lima, A. L. S., Matta, F. M. da, Pinheiro, H. A., Totola, M. R., & Loureiro, M. E. (2002). Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environmental & Experimental Botany, 47(1), 239-247. doi: 10.1016/S0098-8472(01)00130-7 DOI: https://doi.org/10.1016/S0098-8472(01)00130-7

Lima, E. P., & Silva, E. L. (2008). Temperatura base, coeficiente de cultura e graus-dia para cafeeiro arábica em fase de implantação. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(3), 266-273. doi: 10. 1590/S1415-43662008000300007 DOI: https://doi.org/10.1590/S1415-43662008000300007

Manetti, J., Fº., Oliveira, C. M. G. de, Caramori, P. H., Nagashima, G. T., & Hernandez, F. B. T. (2018). Cold tolerance of forage plant species. Semina: Ciências Agrárias, 39(4), 1469-1475. doi: 10.5433/1679-0359. 2018v39n4p1469 DOI: https://doi.org/10.5433/1679-0359.2018v39n4p1469

Mariucci, V., Jr., Shigueoka, L. H., Pereira, C. T. M., Carducci, F. C., Sera, T., & Sera, G. H. (2022). Resistance to frost in Arabica coffee lines introgressed with Coffea racemosa Lour. genes. Australian Journal of Crop Science, 16(3), 338-342. doi: 10.21475/ajcs.22.16.03.p2925 DOI: https://doi.org/10.21475/ajcs.22.16.03.p2925

Matta, F. M. da, Maestri, M., Mosquim, P. R., & Barros, R. S. (1997). Photosynthesis in coffee (Coffea arabica and C. canephora) as affected by winter and summer conditions. Plant Science, 128(1), 43-50. doi: 10. 1016/S0168-9452(97)00142-8 DOI: https://doi.org/10.1016/S0168-9452(97)00142-8

Matta, F. M. da, & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18(1), 55-81. doi: 10.1590/s1677-0420 2006000100006 DOI: https://doi.org/10.1590/S1677-04202006000100006

Nitsche, P. R., Caramori, P. H., Ricce, W. S., & Pinto, L. F. D. (2019). Atlas climático do estado do Paraná. Instituto Agronômico do Paraná.

Partelli, F. L., Vieira, H. D., Viana, A. P., Batista Santos, P., Rodrigues, A. P., & Leitão, A. E. (2011). Low temperature impact on photosynthetic parameters of coffee genotypes. Pesquisa Agropecuária Brasileira, 44(11), 1404-1415. doi: 10.1590/s0100-204x2009001100006 DOI: https://doi.org/10.1590/S0100-204X2009001100006

Petek, M. R., Sera, T., & Alteia, M. Z. (2005). Selection for frost resistance in Coffea arabica progenies carrying C. liberica var. dewevrei genes. Crop Breeding and Applied Biotechnology, 5(3), 355-362. doi: 10.12702/1984-7033.v05n03a14 DOI: https://doi.org/10.12702/1984-7033.v05n03a14

Ramalho, J. C., Quartin, V. L., Leitão, E., Campos, P. S., Carelli, M. L. C. V., Fahl, J. I., & Nunes, M. A. (2003). Cold acclimation ability and photosynthesis among species of the tropical Coffea genus. Plant Biology, 5(6), 631-641. doi: 10.1055/s-2003-44688 DOI: https://doi.org/10.1055/s-2003-44688

Rapacz, M., Gąsior, D., Kościelniak, J., Kosmala, A., Zwierzykowski, Z., & Humphreys, M. W. (2007). The role of the photosynthetic apparatus in cold acclimation of Lolium multiflorum. Characteristics of novel genotypes low-sensitive to PSII over-reduction. Acta Physiologiae Plantarum, 29(4), 309-316. doi: 10. 1007/s11738-007-0040-7 DOI: https://doi.org/10.1007/s11738-007-0040-7

Ribeiro, R. V., Machado, E. C., Santos, M. G., & Oliveira, R. F. (2009). Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. Photosynthetica, 47(2), 215-222. doi: 10.1007/s11099-009-0035-2 DOI: https://doi.org/10.1007/s11099-009-0035-2

Rozzetto, D. S., Marschalek, R., Stuker, H., Raimondi, J. V., & Eberhardt, D. S. (2017). Tolerância de genótipos de arroz irrigado submetidos a estresse por baixas temperaturas na fase reprodutiva. Agropecuária Catarinense, 28(2), 61-66. doi: 10.1590/1807-1929

Saini, R. K., Shang, X. M., Ko, E. Y., Choi, J. H., & Keum, Y. S. (2018). Stability of carotenoids and tocopherols in ready-to-eat baby-leaf lettuce and salad rocket during low temperature storage. International Journal of Food Sciences and Nutrition, 67(5), 489-495. doi: 10.3109/09637486.2016.11 72059 DOI: https://doi.org/10.3109/09637486.2016.1172059

Sanghera, G. S., Wani, S. H., Hussain, W., & Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12(1), 30-43. doi: 10.2174/138920211794520178 DOI: https://doi.org/10.2174/138920211794520178

Siebeneichler, S. C., Sant'ana, R., Martinez, C. A., Mosquim, P. R., Cambraia, J., & Chagas, J. M. (2000). Efeitos da baixa temperatura no crescimento e nos teores de açúcares solúveis e de prolina em dois cultivares de feijão. Revista Ceres, 47(273), 495-509. http://www.ceres.ufv.br/ojs/index.php/ceres/article/ view/2617

Souza, B. P. D., Prieto Martinez, H. E., Caixeta, E. T., Carvalho, F. P. de, Clemente, J. M., Loureiro, M. E., & Sturião, W. P. (2015). Trocas gasosas em mudas de café arábica submetidas ao déficit hídrico e deficiência de nitrogênio. Anais do Simpósio de Pesquisa dos Cafés do Brasil, Curitiba, PR, Brasil, 9.

Stirbet, A. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1-2), 236-257. doi: 10.1016/j.jphotobiol.2010.12.010 DOI: https://doi.org/10.1016/j.jphotobiol.2010.12.010

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6a ed.). Artmed.

Tseng, M. J., & Li, P. H. (1991). Changes in protein synthesis and translatable messenger rna populations associated with aba induced cold hardiness in potato (Solanum commersonii). Physiologia Plantarum, 81(3), 349-358. doi: 10.1111/j.1399-3054 DOI: https://doi.org/10.1034/j.1399-3054.1991.810310.x

Van der Vossen, H., Bertrand, B., & Charrier, A. (2015). Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica, 204(2), 243-256. doi: 10.1007/s10 681-015-1398-z DOI: https://doi.org/10.1007/s10681-015-1398-z

Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., & Sarin, N. B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(8), 1428-1438. doi: 10.1016/j.bbabio.2010.02.002 DOI: https://doi.org/10.1016/j.bbabio.2010.02.002

Downloads

Published

2022-11-17

How to Cite

Rosisca, J. R., Nagashima, G. T., Oliveira, C. M. G. de, Morais, H., Sera, G. H., Caramori, P. H., & Silva, M. A. de A. e. (2022). Parameters associated with the resistance of coffee genotypes to low temperatures. Semina: Ciências Agrárias, 43(5), 2293–2308. https://doi.org/10.5433/1679-0359.2022v43n5p2293

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 > >>