Genetic characterization of tambaqui stocks from two pisciculture stations in the lower São Francisco River
DOI:
https://doi.org/10.5433/1679-0359.2020v41n6Supl2p3323Keywords:
ATPase, Colossoma macropomum, Control region, Genetic variability.Abstract
Pisciculture has been an important part of the economy in many regions of Brazil, and the tambaqui (Colossoma macropomum) stands out as one of the country’s most commercialized native freshwater fish species. Loss of genetic variability can affect characteristics such as reproduction and growth rates, as well as disease resistance and is of great concern in this field. Molecular markers such as mitochondrial DNA genes have been increasingly used to understand genetic variability in species of economic importance. This study aimed to characterize the genetic variability of tambaqui populations reared in two fish farms (Itiúba, AL and Betume, SE) of the lower São Francisco River by analyzing the control region and ATPase genes of mitochondrial DNA. Sequencing of samples from progenies and breeding individuals identified 42 haplotypes (32 unique), of which four haplotypes were shared between the two fish farms as a result of a founder effect, because individuals from Itiúba formed the stock of the Betume fish farming Station. Haplotype diversity was high in both locations. Analysis of Molecular Variance (AMOVA) revealed greater genetic variation within populations (96.76%) than between them (3.24%) and the FST value (0.03) indicated low genetic differentiation between the two populations. The observed high genetic variability can be explained by the number of breeders in the two fish farms (200 in Itiúba and 1400 in Betume) and the breeding management system, which seems to be effective in maintaining stock variability.Downloads
References
Aguiar, J. P., Schneider, H., Gomes, F., Carneiro, J., Santos, S., Rodrigues, L. R., & Sampaio, I. (2013). Genetic variation in native and farmed populations of Tambaqui (Colossoma macropomum) in the Brazilian Amazon: regional discrepancies in farming systems. Anais da Academia Brasileira de Ciências, 85(4), 1439-1447. doi: 10.1590/0001-376520130007
Albuquerque, M. O., Silva, J. W. B., & Kovács, G. (1991). Sobre o desenvolvimento do ovo e embrião do tambaqui, Colossoma macropomum CUVIER, 1818. (Boletim Técnico, n. 47/521/2). Fortaleza: DNOCS.
Araujo-Lima, C. A. R. M., & Goulding, M. (1997). So fruitful fish: ecology, conservation, and aquaculture of the Amazon’s Tambaqui. New York, NY: Columbia University Press.
Carvalho, J., F°. (2019). Os números da aquicultura brasileira em 2018. Panorama da Aquicultura, 29(174), 58-61. Recuperado em http://panoramadaaquicultura.com.br/os-numeros-da-aquicultura-brasileira-em-2018/
Clayton, D. A. (1982). Replication of animal mitochondrial DNA. Cell, 28(4), 693-705, 1982. doi: 10.1016/ 0092-8674(82)90049-6
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567. doi: 10.1111/j.1755-0998.2010.02847.x
Faria, R. H. S. de, Morais, M., Soranna, M. R. G. de S., & Sallum, W. B. (2013). Manual de criação de peixes em viveiro. Brasília: Codevasf.
Fazzi-Gomes, P., Guerreiro, S., Palheta, G. D. A., Melo, N. F. A. C. de, Santos, S., & Hamoy, I. (2017). High genetic diversity and connectivity in Colossoma macropomum in the Amazon basin revealed by microsatellite markers. Genetics and Molecular Biology, 40(1), 142-146. doi: 10.1590/1678-4685-gmb-2015-0222
Fontes, N. de A., Senhorini, J. A., & Lucas, A. F. B. (1990). Efeito de duas densidades de estocagem no desempenho larval do paqui, Piaractus mesopotamicus (fêmea) (Holmberg 1887) X Colossoma macropomum (macho) (Cuvier 1818) em viveiros. (Boletim Técnico, 3). Pirassununga: CEPTA.
Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915-925, 1997. Recuperado em http://filogeografia.dna.ac/ PDFs/Fu_97_F-sub-S_Test.pdf
Gomes, F., Schneider, H., Barros, C., Sampaio, D., Hashimoto, D., Porto-Foresti, F., & Sampaio, I. (2012). Innovative molecular approach to the identification of the tambaqui (Colossoma macropomum) and its hybrids. Anais da Academia Brasileira de Ciências, 84(2), 5-8. doi: 10.1590/S0001-376520120050000 25
Gomes, L. de C., Simões, L. N., & Araújo-Lima, C. A. R. M. (2013). Tambaqui (Colossoma macropomum). In B. Baldisserotto, & L. C. Gomes (Eds.), Espécies nativas para piscicultura no Brasil (pp. 177). Santa Maria, RS: Ed. UFSM.
Grant, W. S., & Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5), 415-426. doi: 10.1093/jhered/89.5.415
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Version 7.2.5, last update (12/11/2013). Nucleic Acids Symposium Series, 41(1), 95-98. doi: 10.14601/Phytopathol_Mediterr-14998u1.29
Hilsdorf, A. W. S., & Dergam, J. A. (1999). Depressão por endogamia: somente uma terminologia genética ou um fato na aquicultura. Panorama da Aquicultura, 9(55), 34-36. Recuperado em http://panoramada aquicultura.com.br/depressao-por-endogamia/
Instituto Brasileiro de Geografia e Estatística (2018). Produção da pecuária municipal 2018. Rio de Janeiro: IBGE. Recuperado de https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2018_v46_br_ informativo.pdf
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML -NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35(21), 4453-4455. doi: 10.1093/bioinformatics/btz305
Liu, Z. J., & Cordes, J. F. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238(1-4), 1-37. doi: 10.1016/j.aquaculture.2004.05.027
Lopera-Barrero, N. M., Ribeiro, R. P., Povh, J. A., Vargas, L., Fornari, D. C., Sirol, R. N., & Rodríguez Rodríguez, M. del P. (2010). Diversidad genética de Brycon orbignyanus en el sistema reproductivo semi-natural, utilizando o marcador RAPD. Zootecnia Tropical, 28(1), 73-82. Recuperado em http:// www.researchgate.net/publication/262477931_Diversidad_genetica_de_Brycon_orbignyanus_en_el_sistema_reproductivo_semi-natural_utilizando_el_marcador_RAPD
Lopera-Barrero, N. M., Rodriguez-Rodriguez, M. del P., Fornari, D. C., Resende, E. K. de, Poveda-Parra, A. R., Braccini,… Ribeiro, R. P. (2015). Genetic variability of broodstocks of Tambaqui (Teleostei-Characidae) from the northeast region of Brazil. Semina: Ciências Agrárias, 36(6), 4013-4022. doi: 10. 5433/1679-0359.2015v36n6p4013
Melo, D. C., Oliveira, D. A. A., Ribeiro, L. P., Teixeira, C. S., Souza, A. B., Coelho, E. G. A.,... Teixeira, E. A. (2006). Caracterização genética de seis plantéis comerciais de tilápia (Oreochromis) utilizando marcadores microsatéllites. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58(1), 87-93. doi: 10.1590/S0102-09352006000100013
Meyer, A. (1993). Evolution of mitochondrial DNA in fishes. In P. Hochachka, & T. P. Mommsen (Eds.), Biochemistry and molecular biology of fishes (pp. 1-38). Amsterdam: Elsevier Science.
Ministério da Agricultura, Pecuária e Abastecimento (2019). No período de 2019/ 2020, pesca e aquicultura têm melhores condições de comercialização. Brasília: MAPA. Recuperado de https://www.gov.br/ agricultura/pt-br/assuntos/noticias/melhores-condicoes-de-comercializacao-beneficiam-o-setor-de-pesca -e-aquiculturaercializacao-beneficiam-o-setor-de-pesca-e-aquicultura
Molle, F., & Cadier, E. (1992). Manual do pequeno açude: construir, conservar e aproveitar pequenos açudes no nordeste brasileiro. Recife: SUDENE.
Moraes, A., Neto, Ayres, D. R., Streit, D. P., Jr., Lopera-Barrero, N. M., Ferraz, P. B., F°, Corrêa, R. A. C., F°,... Povh, J. A. (2017). Genetic diversity of tambaqui broodstocks in stock enhancement programs. Semina: Ciências Agrárias, 38(3), 1665-1670. doi: 10.5433/1679-0359.2017v38n3p1665
Moreira, H. L. M. (2001). Genética e melhoramento de peixes. In H. L. M. Moreira, L. Vargas, R. P. Ribeiro, & S. Zimmermann (Eds.), Fundamentos da moderna aquicultura (pp. 135-147). Canoas: Ed. ULBRA.
Nelson, J. S., Terry, C. G., & Mark, V. H. W. (2016). Fishes of the world (5a ed.). Hoboken, New Jersey: John Wiley & Sons.
Overturf, K. (2009). Convergence of aquaculture and molecular biology. In K. Overturf (Ed.), Molecular research in aquaculture (pp. 1-13). Iowa: John Wiley & Sons.
Page, R. D. M., & Holmes, E. C. (1998). Molecular evolution: a phylogenetic approach. Oxford: Blackwell Science.
Porta, J., Porta, J. M., Martínez-Rodríguez, G., & Alvarez, M. C. (2006). Genetic structure and genetic relatedness of a hatchery stock of Senegal sole (Solea senegalensis) inferred by microsatellites. Aquaculture, 251(1), 46-55. doi: 10.1016/j.aquaculture.2005.05.019
Povh, J. A., Ribeiro, R. P., Sirol, R. N., Streit, D. P., Jr., Lopera-Barrero, N. M., Vargas, L.,... Lopes, T. S. (2008). Diversidade genética de pacu do rio Paranapanema e do estoque de um programa de repovoamento. Pesquisa Agropecuária Brasileira, 43(2), 201-206. doi: 10.1590/s0100-204x200800020 0007
Queiroz, C. A. de, Souza, N. R., Silva, G. F. da, & Inoue, L. A. K. A. (2016). Impacts of stocking on the genetic diversity of Colossoma macropomum in central Amazon, Brazil. Genetics and Molecular Research, 15(2), 1-9. doi: 10.4238/gmr.15027700
Ribeiro, R. P., Rodriguez-Rodriguez, M. del P., Resende, E. K., Souza, F. P., Povh, J. A., Poveda-Parra, A. R.,... Lopera-Barrero, N. M. (2016). Genetic characteristics of Tambaqui broodstocks in the state of Rondônia, Brazil: implications on production and conservation. Semina: Ciências Agrárias, 37(4, Suppl. 1), 2375-2386. doi: 10.5433/1679-0359.2016v37n4Supl1p2375
Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology Evolution, 9(3), 552-569. doi: 10.1093/oxfordjournals.molbev. a040727
Rozas, J., Librado, P., Sánchez-Delbarrio, J. C., Messeguer, X., & Rozas, R. (2010.). DnaSP v 5.10.01: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. Recuperado em http://www.ub.edu/dnasp/index_v5.html
Salzburger, W., Ewing, G. B., & Von Haeseler, A. (2011). The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20(9), 1952-1963. doi: 10.1111/j. 1365-294X.2011.05066.x
Santos, C. H. dos A. dos, Brito Leitão, M. A. de, Souza, C. F. S. de, Santana, G. X., Paula-Silva, M. de N., & Almeida-Val, V. M. F. (2012). Genetic variability of wild and captivity populations of Colossoma macropomum (Cuvier, 1818). Acta Scientiarum. Biological Sciences, 34(2), 191-197. doi: 10.4025/ actascibiolsci.v34i2.7149
Santos, G. M., Ferreira, E. J. G., & Zuanon, J. A. S. (2006). Peixes comerciais de Manaus (2a ed.). Manaus, AM: INPA.
Santos, M. C. F., Ruffino, M. L., & Farias, I. P. (2007). High levels of genetic variability and panmixia of the tambaqui Colossoma macropomum (Cuvier, 1816) in the main channel of the Amazon River. Journal of Fish Biology, 71(Suppl. A), 33-44. doi: 10.1111/j.10958649.2007.01514.x
Santos, M. C. F., Hrbek, T., & Farias, I. P. (2018). A multilocus approach to understanding historical and contemporary demography of the keystone floodplain species Colossoma macropomum (Teleostei: Characiformes). Frontiers in Genetics, 9(263), 1-17. doi: 10.3389/fgene.2018.00263
Silva, C. A. da, & Fujimoto, R. Y. (2012). A piscicultura familiar do tambaqui na região do Baixo São Francisco. Aracaju: Embrapa Tabuleiros Costeiros.
Sivasundar, A., Bermingham, E., & Orti, G. (2001). Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers. Molecular Ecology, 10(2), 407-417. doi: 10.1046/j.1365-294X.2001.01194.x
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595. Recuperado em http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1203831/ pdf/ge1233585.pdf
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weinhting, position-specific gap penalties and weigth matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi: 10.1093/nar/22.22.4673
Varela, E. S., Alves, A. L., Barroso, A. da S., & Tardivo, T. F. (2014). Parentesco genético em reprodutores de tambaqui (Colossoma macropomum) baseado em marcadores de DNA: perspectivas de manejo genético na ausência de pedigree. Palmas: EMBRAPA Pesca e Aquicultura. Recuperado de https://www.researchgate.net/publication/292152775_Parentesco_genetico_em_reprodutores_de_tambaqui_Colossoma_macropomum_baseado_em_marcadores_de_DNA_perspectivas_de_manejo_genetico_na_ausencia_de_pedigree_Serie_Embrapa?channel=doi&linkId=56ab5f7e08aed5a0135c0e63&showFulltext=true
Weingartner, M., & Zaniboni, E., F°. (2013). Biologia e cultivo do dourado. In B. Baldisserotto, & L. C. Gomes (Eds.), Espécies nativas para a piscicultura no Brasil (2a ed., pp. 245-281). Santa Maria, RS: Editora da UFSM.
Wright, S. (1978). Evolution and genetics of populations. Chicago: University of Chicago.
Wu, Y.-P., Xie, J.-F., He, Q.-S., & Xie, J.-L. (2015). The complete mitochondrial genome sequence of Colossoma macropomum (Characiformes: Serrasalmidae). Mitochondrial DNA, 27(6), 4080-4081. doi: 10.3109/19401736.2014.1003853
Xin-Hong, G., Shao-Jun, L., & Yun, L. (2004). Evidence for maternal inheritance of mitochondrial DNA in polyploidy fish of crosses by ATPase8 and ATPase6 genes. Acta Zoologica Sinica, 50(3), 408-413.
Yan, J., Guo, X., Liu, S., Xiao, J., Liu, Z., Chen, Y., & Liu, Y. (2009). Maternal inheritance in polyploid fish inferred from mitochondrial ATPase genes analysis. Progress in Natural Science, 19(6), 693-698. doi: 10.1016/j.pnsc.2008.10.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.