Photosynthetic model for citrus cultivar Huangguogan
DOI:
https://doi.org/10.5433/1679-0359.2020v41n1p61Keywords:
Citrus cultivar Huangguogan, Light-response curves, Photosynthetic parameters.Abstract
Grafting is an effective measure to improve the photosynthetic rate of citrus. The light responses of photosynthesis in leaves of two-year old grafted Huangguogan (citrus cultivar Huangguogan), Huanggougan / Trifoliate (HG/PT), Huanggougan / Tangerine (HG/CR), and Huanggougan / Ziyang Xiangcheng (HG/CJ) were studied using the LI-COR 6400 portable photosynthesis system. Light-response curves and photosynthetic parameters were analyzed and fitted using the rectangular hyperbola model (RHM), the exponential model (EM), the non rectangular hyperbola model (NRHM), and the modified rectangular hyperbola model (MRHM). The results showed that: (1) Grafting can change the photosynthetic characteristics of Huangguogan, and the value of photosynthesis rate of HG/CJ is the greatest; (2) The light-response curves of net photosynthetic rate (PN), the light compensation point (LCP), and the dark respiration rate (RD) were well fitted using the above four models. The modified rectangular hyperbola was the best model in fitting the data; the nonrectangular hyperbola model was the second, and the rectangular hyperbola model was the poorest one.Downloads
References
Baly, E. C. (1935). The kinetics of photosynthesis. Proceedings of the Royal Society B: Biology Sciences, 117(804), 218-239. doi: 10.1038/134933a0
Bassal, M. (2009). Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Scientia Horticulturae, 119, 132-137. doi: 10.1016/j.scienta.2008.07.020
Bassman, J., & Zwier, J. C. (1991). Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids clone. Tree Physiology, 8(1), 145-159. doi: 10.1093/treephys/8.2.145
Blankenship, R. E. (2002). Molecular mechanisms of photosynthesis. Oxford: Blackwell Sci.
Castle, W. S., Baldwin, J. C., & Muraro, R. P. (2010). Performance of ‘Valencia’ sweet orange trees on 12 rootstocks at two locations and an economic interpretation as a basis for rootstock selection. Hortscience A Publication of the American Society for Horticultural Science, 45(454), 523-533.
Casde, W. S., Tucker, D. H., & Krezdom, A. H. (1993). Rootstocks for Florida citrus. Gainesville: University of Florida.
Chen, J., Zhang, G. C., Zhang, S. Y., & Wang, M. J. (2008). Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture. Chinese Journal of Applied Ecology, 19(6), 1185-1190. doi: 10.13287/j.1001-9332.2008.0225
Chen, Z. Y., Peng, Z. S., Yang, J., Chen, W. Y., & Ou-Yang, Z. M. (2011). A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 49(3), 467-471. doi: 10.1007/s11099-011-0056-5
Duan, A. G., & Zhang, J. G. (2009). Selection of models of photosynthesis in response to irradiance and definition of attribute of weak light. Forest Research, 22(6), 765-771. doi: 10.1007/978-1-4020-9623-5_5
Eilers, P. H. C., & Peeters, J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3), 199-215. doi: 10.1016/0304-3800(88)90057-9
Evans, J. R., Jakonbsen, I., & Ogren, E. (1993). Photosynthetic light-response curves. Planta, 189(2), 191-200. doi: 10.1007/bf00195075
Falkowski, P. G., & Wirick, C. D. (1981). A simulation model of the effects of vertical mixing on primary productivity. Marine Biology, 65(1), 69-75. doi: 10.1007/BF00397069
Farquhar, G. D., Caemmerers, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. doi: 10.1007/BF00386231
Fasham, M. J. R., & Platt, T. (1983). Photosynthesis response of phytoplankton to light: a physiological model. Proceedings of the Royal Society B: Biology Sciences, 219(1217), 355-370. doi: 10.1098/rspb.1983.0078
Forner-Giner, M. A., Alcaide, A., Primo-Millo, E., & Fomer, J. B. (2003). Performance of ‘Navelina’ orange on 14 rootstocks in Northern Valencia. Scientia Horticulturae, 98, 223-232. doi: 10.1016/S0304-4238(02)00227-3
Georgiou, A. (2002). Evaluation of rootstocks for ‘Clementine’ mandarin in Cyprus. Scientia Horticulturae, 93(1), 29-38. doi: 10.1016/s0304-4238(01)00311-9
Gmitter, F. G., Xiao, S. Y., Huang, S., Hu, X. L., Garnsey, S. M., & Deng, Z. (1996). A localized linkage map of the citrus tristeza virus resistance gene region. Theoretical and Applied Genetic, 92(6), 688-695. doi: 10.1007/BF00226090
González-Mas, M. C., Llosa, M. J., & Quijano, A. (2009). Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Hortscience, 44(2), 280-283. doi: 10.21273/HORTSCI.44.2.280
Govindjee, Krogmann D. (2004). Discoveries in oxygenic photosynthesis (1727-2003): A perspective. Photosynthesis Research, 80(1-3), 15-57. doi: 10.1023/b:pres.0000030443.63979.e6
Hand, D. W., Warren, W. J. W., & Acock, B. (1993). Effects of light and CO2 on net photosynthetic rates of stands of aubergine and Amaranthus. Annals of Botany, 71(3), 209-216. doi: 10.1006/anbo.1993.1026
Hernández, F., Pinochet, J., Moreno, M. A., Martínez, J. J., & Legua, P. (2010). Performance of Prunus rootstocks for apricot in Mediterranean conditions. Scientia Horticulturae, 124(3), 354-359. doi: 10.1016/j.scienta.2010.01.020
Huang, H. Y., Dou, X. Y., Sun, B. Y. Deng, B., Wu, G., & Peng, C. (2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica, 29(6), 2861-2867. doi: 10.3321/j.issn:1000-0933.2009.06.012
Jassby, A. D., & Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21(4), 540-547. doi: 10.4319/lo.1976.21.4.0540
Liao, L., Cao, S. Y., Rong, Y., & Wang, Z. H. (2016). Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan. Genetics and Molecular Research, 15(1), 1-10. doi: 10.4238/gmr.15017690
Lang, Y., Wang, M., Zhang, G. C., & Zhao, Q. K. (2013). Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica, 51(3), 370-378. doi: 10.1007/s11099-013-0036-z
Li H.S. (2002). Modern Plant Physiology. Beijing: Higher Education Press.
Li, Y. X., Yang, Z. Q., & Zhang, F. C. (2011). Applicability of different photosynthesis models for winter wheat in the Lower Yangtze River. Chinese Journal of Agrometeorology, 32(4), 588-592. doi: 10.3969/j.issn.1000-6362.2011.04.018
Liu, Q., Li, F. R., & Xie, L. F. (2016). Optimal model of photosynthesis-light response curve in canopy of planted Larix olgensis tree. Chinese Journal of Applied Ecology, 2(8), 2420-2428. doi: 10.13287/j.1001-9332.201608.023
Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photo inhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology,45(1), 633- 662. doi: 10.1146/annurev.pp.45.060194.003221
Lu, P. L., Yu, Q., Luo Y., & Liu, J. D. (2001). Fitting light response curves of photosynthesis of winter wheat. Agricultural Meteorology, 22(2), 12-14. doi: 10.3969/j.issn.1000-6362.2001.02.003
Marshall, B., & Biscoe, P. V. (1980). A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 31(120), 29-39. doi: 10.1093/jxb/31.1.41
Megard, R. O. D., Tonkyn, W., & Senti, W. H. (1984). Kinetics of oxygenic photosynthesis in planktonic algae. Journal of Plankton Research, 6(2), 325-337. doi: 10.1093/plankt/6.2.325
Morinaga, K., & Ikeda, F. (1990). The effects of several rootstocks on photosynthesis, distribution of photosynthetic product, and growth of young satsuma mandarin trees. Journal of the Japanese Society for Horticultural Science, 59(1), 29-34. doi: 10.2503/jjshs.59.29
Pan, R. C. (2001). Plant Physiology. Beijing: Higher Education Press.
Papadakis, I. E., Dimassi, K. N., Bosabalidis, A. M. Therios, I. N., Patakas, A., & Giannakoula, A. (2004). Effects of B excess on some physiological and anatomical pararneters of ‘Navelina’ orange plants grafted on two rootstocks. Environmental & Experimental Botany, 51(2), 247-257. doi: 10.1016/j.envexpbot.2003.11.004
Peng, S. (2000). Single-leaf and canopy photosynthesis of rice. Studies in Plant Science, 7(1), 213-228. doi: 10.1016/S0928-3420(00)80017-8
Hardy, B., Sheehy, J. E., & Mitchell, P. L. (2000). Redesigning rice photosynthesis to increase yield. Studies in Plant Science, 7(1), 7-10. doi: 10.2135/cropsci2002.2227
Posada, J. M., Lechowicz, M. J., & Kitajima, K. (2009). Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany, 103(5), 795-805. doi: 10.1093/aob/mcn265
Rodríguez-Gamir, J., Intrigliolo, D. S., Primo-Millo, E., & Forner-Giner, M. A. (2010). Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiologia Plantarum, 139(2), 159-169. doi: 10.1111/j.1399-3054.2010.01351.x
Robert, E. S., Mark, A., & John, S. B. (1984). Kok effect and the quantum yield of photosynthesis. Plant Physiology, 75(1), 95-101. doi: 10.1104/pp.75.1.95
Rubio, F. C., Camacho, F. G., Sevilla, J. M. F., Chisti, Y., & Grima, E. M. (2003). A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering, 81(4), 459-473. doi: 10.1002/bit.10492
Steel, J. H. (1962). Environmental control of photosynthesis in the sea. Limmol. Oceanogr, 7(2), 137-150. doi: 10.4319/lo.1962.7.2.0137
Thornley, J. H. M. (1976). Mathematical Models in Plant Physiology. London: Academic Press.
Wang, Z. L., Yang, C. Du, J. C., Hu, H. F., Zhao, L. L., & Mao, X. T. (2009). Photosynthetic characteristics and photo-adaptability of four Melilotoides ruthenica ecotype. Chinese Journal of Ecology, 28(6), 1035-1040. doi: 10.13292/j.1000-4890.2009.0187
Webb, W. L., Newton, M., & Start, D. (1974). Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologica, 17(4), 281-291. doi: 10.2307/4215048
Wu, Q., Zhang G. C., Pei, B., Xu, Z. Q., & Fang, L.D. (2013). CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions. Chinese Journal of Applied Ecology, 24(6), 1517-1524. doi: 10.13287/j.1001-9332.2013.0327
Xia, J. B., Zhang, G. C., Wang, R. R., & Zhang, S. Y. (2014). Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: Comparison of four models. Photosynthetica, 52(2), 253-261. doi: 10.1007/s11099-014-0030-0
Xia, J. B., Zhang, J. Y., Zhang, G. C., & Li, T. (2009). Photosynthetic and physiological characteristics of three shrubs species in Shell islands of Yellow River Delta. Acta Botanica Boreali-Occidentalia Sinica, 29(7), 1452-1459. doi: 10.3321/j.issn:1000-4025.2009.07.025
Xia, J. B., Zhang, G.C., Liu, G., Han, W., Chen, J., & Liu, X. (2007). Light response of Wisteria sinensis leaves physiological parameters under different soil moisture conditions. Chinese Journal of Applied Ecology, 18(1), 30-34. doi: doi:10.1360/yc-007-1324
Xie, R., Pan, X., Zhang, J., Ma, Y., He, S., Zheng, Y., & Ma, Y. (2017). Effect of salt-stress on gene expression in citrus roots revealed by rna-seq. Functional & Integrative Genomics, 18(2), 155-173. doi: 10.1007/s10142-017-0582-8
Xu, D. Q. (2002). Photosynthetic Efficiency. Beijing: Shanghai Science and Technology Publishing House.
Xiong, C. Y., Zeng, W., Xiao, F. M., Zeng, Z.G., Tu, S. Y., Jiang, B., Qiu, F. Y., Wu, Y. F., & Jiang, X. (2012). An analysis of photosynthetic parameters among Schima superba provenances. Acta Ecologica Sinica, 32(11), 3628-3631. doi: 10.5846/stxb201103080281
Ye, Z. P., & Wang, J. L. (2009). Comparison and analysis of light-response models of plant photosynthesis. Journal of Jinggangshan University(Natural Science, 30(2), 9-13. doi: 10.3969/j.issn.1674-8085.2009.02.002
Ye, Z. P., & Gao, J. (2008). Change of carboxylation efficiency of Salvia miltiorrhiza in the vicinity of CO2 compensation point. Journal of Northwest University of Agriculture and Forestry Science and Technology Natural Science Edition, 36(5), 160-164. doi: 10.3321/j.issn:1671-9387.2008.05.029
Ye, Z. P., & Yu, Q. (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Chinese Journal of Plant Ecology, 32(6), 1356-1361. doi: 10.3773/j.issn.1005-264x.2008.06.016
Ye, Z. P. (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34(6), 727-740, doi: 10.3724/SP.J.1142.2010.40521
Ye, Z. P. (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45(4), 637-640. doi: 10.1007/s11099-007-0110-5
Ye, Z. P., & Yu, Q. (2008). A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 46(4), 637-640. doi: 10.1007/s11099-008-0110-0
Yu, Q., Zhang Y. Q., Liu, Y. F., & Shi, P. L. (2004). Simulation of the stomatal condutrance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 93(4), 435-441. doi: 10.1093/aob/mch023
Zeng, X. M., Yuan, L., & Shen, Y. G. (2002). Response of photosynthesis to light intensity in intact and detached leaves of Arabidopsis thaliana. Plant Physiology Communications, 38(1), 25-26. doi: 10.13592/j.cnki.ppj.2002.01.007
Zhang, K., Wan, Y. S., Liu, F. Z., Zhang, E. Q., & Wang, S. (2009). Response of photo-synthetic characteristics of peanut seedlings leaves to low light. Chinese Journal of Applied Ecology, 20(12), 2989-2995. doi: 10.13287/j.1001-9332.2009.0448
Zhong, C., Zhang, M. D., Hu, X. Q., & Zhu, Y. (2012). Effects of temperature variation on the light-response characteristics of tobacco leaf photosynthesis. Chinese Journal of Ecology, 31(2), 337-341. doi: 10.13292/j.1000-4890.2012.0066
Zonneveld, C. (1998). Photoinhibition as affected by photo-acclimation in phytoplankton: a model approach. Journal of Theoretical Biology, 193(1), 115-123. doi: 10.1006/jtbi.1998.0688
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Semina: Ciências Agrárias
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adopts the CC-BY-NC license for its publications, the copyright being held by the author, in cases of republication we recommend that authors indicate first publication in this journal.
This license allows you to copy and redistribute the material in any medium or format, remix, transform and develop the material, as long as it is not for commercial purposes. And due credit must be given to the creator.
The opinions expressed by the authors of the articles are their sole responsibility.
The magazine reserves the right to make normative, orthographic and grammatical changes to the originals in order to maintain the cultured standard of the language and the credibility of the vehicle. However, it will respect the writing style of the authors. Changes, corrections or suggestions of a conceptual nature will be sent to the authors when necessary.