Influência de plantas utilizadas na diversificação agrícola sobre o nematoide Heterorhabditis amazonensis

Autores

DOI:

https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3553

Palavras-chave:

Controle biológico conservativo, Controle inundativo, Conservação, Nematoides entomopatogênicos, Persistência.

Resumo

Em um sistema agrícola, a fim de aumentar o controle biológico natural, plantas que atraem inimigos naturais podem ser cultivadas junto à cultura principal. Porém, os efeitos destas plantas sobre nematoides-entomopatogênicos (NEPs), importante agentes de controle de pragas de solo, e sua ação na conservação destes, são desconhecidos. Com o objetivo de avaliar o efeito de algumas destas plantas sobre NEPs, foram montados dois experimentos em casa-de-vegetação. O primeiro observou o efeito das plantas Crotalaria spectabilis, Crotalaria breviflora e Tagetes erecta sobre a persistência e infectividade de Heterorhabditis amazonensis isolado RSC 5 durante 27 dias, comparadas a um tratamento-controle sem plantas. Já o segundo experimento avaliou o efeito de C. breviflora e T. erecta, com a presença ou não do adulto do predador Calosoma granulatum no deslocamento do nematoide. Os resultados indicaram que as plantas não influenciaram na persistência dos nematoides em longo prazo nem na infectividade e no deslocamento de H. amazonensis. Porém, a planta C. spectabilis possibilitou a maior persistência de nematoides no substrato em curto prazo, e T. erecta causou a supressão mais rápida da população inicial de JIs. No segundo experimento observou-se que nem a presença do predador e das plantas afetou a capacidade de deslocamento do nematoide no solo no período de 5 dias. Estes resultados mostram que o conhecimento prévio das plantas a serem utilizadas na diversificação agrícola pode auxiliar no controle inundativo de pragas por NEPs.

Downloads

Não há dados estatísticos.

Biografia do Autor

Natalia Ramos Mertz, Universidade Tecnológica Federal do Paraná

Pesquisador, Pós-Doutorado, Laboratório de Controle Biológico, Universidade Tecnológica Federal do Paraná, UTFPR, Dois Vizinhos, PR, Brasil.

Fernanda Soares Sales, Universidade Federal de Lavras

Aluna do Curso de Doutorado do Programa de Pós-Graduação em Entomologia, Universidade Federal de Lavras, UFLA, Lavras, MG, Brasil.

Elsa Judith Guevara Agudelo, Corporación Colombiana de Investigación Agropecuaria

Ph.D. Researcher, Research Center La Libertad, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Villavicencio, Meta, Colômbia.

Alcides Moino Junior, Universidade Federal de Lavras

Prof. Dr., Programa de Pós-Graduação em Entomologia, UFLA, Lavras, MG, Brasil.

Referências

Adekunle, O. K. (2011). Amendment of soil with African marigold and sunn hemp for management of Meloidogyne incognita in selected legumes. Crop Protection, 30(11), 1392-1395. doi: 10.1016/j.cropro. 2011.07.007

Andaló, V., Santos, V., Moreira, G. F., Moreira, C., Freire, M., & Moino, A. (2012). Movement of Heterorhabditis amazonensis and Steinernema arenarium in search of corn fall armyworm larvae in artificial conditions. Scientia Agricola, 69(3), 226-230. doi: 10.1590/S0103-90162012000300008

Araj, S., Shields, M. W., & Wratten, S. D. (2019). Weed floral resources and commonly used insectary plants to increase the efficacy of a whitefly parasitoid. BioControl, 64(5), 553-561. doi: 10.1007/s1052 6-019-09957-x

Baermann, G. (1917). Eine einfache methode zur auffindung von Ancylostomum (Nematoden) larven in erdproben. Geneeskunding Tijdschrift voor Nederlandsch-Indië, 57, 131-137.

Berriel, V., Monza, J., & Perdomo, C. H. (2020). Cover crop selection by jointly optimizing biomass productivity, biological nitrogen fixation, and transpiration efficiency: application to two Crotalaria species. Agronomy, 10(8), 1116. doi: 10.3390/agronomy10081116

Calabuche-Gómez, G., Regalado, R. E., Perera, D. G., Cabrera, I. M., Soler, D. M., & Hernández, M. G. R. (2019). Efecto de factores abióticos sobre la viabilidad e infectividade de Heterorhabditis amazonensis Andaló et al. cepa HC1. Revista de Protección Vegetal, 34(3), 1-9. Retrieved form http://scielo.sld.cu/ scielo.php?script=sci_arttext&pid=S1010-27522019000300004&lng=es&nrm=iso

Campos-Herrera, R., El-Borai, F. E., Martín, J. A. R., & Duncan, L. W. (2016). Entomopathogenic nematode food web assemblages in Florida natural areas. Soil Biology and Biochemistry, 93, 105-114. doi: 10.101 6/j.soilbio.2015.10.022

Campos-Herrera, R., Stuart, R. J., El-Borai, F., Gutierrez, C., & Duncan, L. (2010). Entomopathogenic nematode ecology and biological control in Florida citrus orchards. In A. Ciancio, & K. G. Mukerji (Eds.), Integrated management of arthropod pests and insect borne diseases (pp. 101-130). Dordrecht: Springer.

Dutky, S. R., Thompson, J. V., & Cantwe, G. E. (1964). A technique for the mass propagation of the DD-136 nematode. Journal of Insect Pathology, 6(4), 417-422.

Ennis, D. E., Dillon, A. B., & Griffin, C. T. (2010). Simulated roots and host feeding enhance infection of subterranean insect by the entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology, 103(2), 140-143. doi: 10.1016/j.jip.2009.11.004

Galbieri, R., Fuzattoii, M. G., Ciaii, E., Welteri, A. M., & Fanan, S. (2011). Desempenho de genótipos de algodoeiro na presença ou não de rotação de cultura com Crotalaria spectabilis, em área infestada com Meloidogyne incognita. Tropical Plant Pathology, 36(5), 303-307. doi: 10.1590/S1982-567620110005 00005

Gardiano, C. G., Dallemole-Giaretta, R., Lopes, E. A., Zooca, R. J. F., Ferraz, S., & Freitas, L. G. (2010). Atividade nematicide de extratos de sementes de espécies de Crotalaria sobre Meloidogyne javanica. Revista Trópica - Ciências Agrárias e Biológicas, 4(1), 1-5. doi: 10.0000/rtcab.v4i1.76

Gassmann, A. J., Stock, P., Tabashnik, B. E., & Singer, M. S. (2010). Tritrophic effects of host plants on a herbivore-pathogen interaction. Annals of the Entomological Society of America, 103(3), 371-378. doi: 10.1603/AN09130

Grubisic, D., Uroic, G., Ivosevic, A., & Grdisa, M. (2018). Nematode control by the use of antagonistic plants. Agriculturae Conspectus Scientificus, 83(4), 269-275. Retrieved from https://acs.agr.hr/acs/ index.php/acs/article/view/1518

Hass, B., Griffin, C. T., & Downes, M. J. (1999). Persistence of Heterorhabditis infective juveniles in soil: comparison of extraction and infectivity measurements. Journal of Nematologists, 31(4), 508-516. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620384/

Hazir, S., Shapiro-Ilan, D. I., Hazir, C., Leite, L. G., Cakmak, I., & Olson, D. (2016). Multifaceted effects of host plants on entomopathogenic nematodes. Journal of Invertebrate Pathology, 135, 53-59. doi: 10.10 16/j.jip.2016.02.004

Helmberger, M. S., Shields, E. J., & Wickings, K. G. (2017). Ecology of belowground biological control: Entomopathogenic nematode interactions with soil biota. Applied Soil Ecology, 121, 201-213. doi: 10. 1016/j.apsoil.2017.10.013

Hodson, A. K., Siegel, J. P., & Lewis, E. E. (2012). Ecological influence of the entomopathogenic nematode, Steinernema carpocapsae, on pistachio orchard soil arthropods. Pedobiologia, 55(1), 51-58. doi: 10.10 16/j.pedobi.2011.10.005

Hooks, C. R. R., Wang, K. H., Ploeg, A., & McSorley, R. (2010). Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Applied Soil Ecology: A Section of Agriculture, Ecosystems & Environment, 46(3), 307-320. doi: 10.1016/j.apsoil.2010.09.005

Jagodic, A., Ipavec, N., Trdan, S., & Laznik, Z. (2017). Attraction behaviors: Are synthetic volatiles, typically emitted by insect-damaged Brassica nigra roots, navigation signals for entomopathogenic nematodes (Steinernema and Heterorhabditis)? Biocontrol, 62(4), 515-524. doi: 10.1007/s10526-017-9 796-x

Kanagy, J. M. N., & Kaya, H. K. (1996). The possible role of marigold roots and α-terthienyl in mediating host-finding by Steinernematid nematodes. Nematologica, 42(2), 220-231. doi: 10.1163/004325996X0 0066

Koppenhofer, A. M., Shapiro-Ilan, D. I., & Hitpold, I. (2020). Entomopathogenic nematodes in sustainable food production. Frontiers in Sustainable Food Systems, 4, 1-14. doi: 10.3389/fsufs.2020.00125

Lewis, E. E., & Clarke, D. J. (2012). Nematode parasites and entomopathogens. In F.Vega, & H. Kaya (Eds.), Insect pathology (pp. 395-424). Cambrige: Academic Press.

Mahmoud, M. F. (2016). Biology and use of entomopathogenic nematodes in insect pests biocontrol, a generic view. Cercetari Agronomice in Moldava, 49(4), 85-105. doi: 10.1515/cerce-2016-0039

Mertz, N. R., Agudelo, E. J. G., Sales, F. S., Rohde, C., & Moino, A., Jr. (2014). Phoretic dispersal of the entomopathogenic nematode Heterorhabditis amazonensis by the beetle Calosoma granulatum. Phytoparasitica, 42(2), 179-187. doi: 10.1007/s12600-013-0349-2

Osei, K., Gowen, S. R., Pembroke, B., Brandenburg, R. L., & Jordan, D. L. (2010). Potential of leguminous cover crops in management of a mixed population of root-knot nematodes (Meloidogyne spp.). Journal of Nematology, 42(3), 173-178. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33804 90/

Parra, J. R. P. (1998). Raising insects for studies of pathogens. In S. B. Alves (Eds.), Microbial control of insects (pp. 1015-1037). Piracicaba: FEALQ.

Pasini, A. (1995). Biologia e técnica de criação do predador Calosoma granulatum Perty, 1830 (Coleoptera: Carabidae) em Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae), lagarta-da-soja. Tese de doutorado, Escola Superior de Agricultura “Luiz de Queiróz”, Piracicaba, SP, Brasil.

Poinar, G. O., Jr., & Grewal, P. S. (2012). History of entomopathogenic nematology. Journal of Nematology, 44(2), 153-161. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578475/

Quispe, R., Mazón, M., & Rodríguez-Berrío, A. (2017). Do refuge plants favour natural pest control in maize crops? Insects, 8(3), 71. doi: 10.3390/insects8030071

Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 32(1), 273-303. doi: 10.1007/s13593-011-0022-4

Santana, S. M., Dias-Arieira, C. R., Biela, F., Cunha, T. P. L., Chiamolera, F. M., Puerari, H. H., & Fontana, L. F. (2012). Manejo de Pratylenchus zeae por plantas antagonistas, em solos de áreas de cultivo de cana-de-açúcar. Nematropica, 42(1), 63-71. Retrieved from https://journals.flvc.org/nematropica/ article /view/79583

Santhi, V. S., Salame, L., Muklada, H., Azaizeh, H., Haj-Zaroubi, M., Awwad, S., Landau, S. Y., Glazer, I. (2019). Toxicity of phenolic compounds to entomopathogenic nematodes: a case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components. Journal of Invertebrate Pathology, 160, 43-53. doi: 10.1016/j.jip.2018.12.003

Stuart, R. J., Barbercheck, M. E., & Grewal, P. S. (2015). Entomopathogenic nematodes in the soil environment: distribution interactions and the influence of biotic and abiotic factors. In: R. Campos-Herrera (Ed.), Nematode pathogenesis of insects as other pests (pp. 97-137). Dordrecht: Springer.

Supriyadi, R., Wijayanti, R., Arniputri, B., Puspitarini, N., & Dwiyatno, M. H. (2019). The effect of Crotalaria juncea plant in coffee ecosystem to the diversity and abundance of predators and parasitoids insects. IOP Conference Series: Earth and Environmental Science, 250(1), 1-6. doi: 10.1088/1755-13 15/250/1/012018

Tavares, W. S., Cruz, W. S. I., Silva, R. B., Figueiredo, M. L. C., Ramalho, F. S., Serrão, J. E. V., & Zanuncio, J. C. (2010). Soil organisms associated to the weed suppressant Crotalaria juncea (Fabaceae) and its importance as a refuge for natural enemies. Planta Daninha, 29(3), 473-479. doi: 10.1590/S010 0-83582011000300001

Thoden, T. C., & Boppré, M. (2010). Plants producing pyrrolizidine alkaloids: Sustainable too nematode management? Nematology, 12(1), 1-24. doi: 10.1163/138855409X12549869072248

Turlings, T. C. J., Hiltpold, I., & Rasmann, S. (2012). The importance of root-produces volatiles as foraging cues for entomopathogenic nematodes. Plant Soil, 358(1), 51-60. doi: 10.1007/s11104-012-1295-3

Woodring, J. L., & Kaya, H. K. (1988). Steinernematid and heterorhabditid nematodes: handbook of biology and techniques. Fayetteville: Arkansas Agricultural Experimental Station.

Downloads

Publicado

2021-10-08

Como Citar

Mertz, N. R., Sales, F. S., Agudelo, E. J. G., & Moino Junior, A. (2021). Influência de plantas utilizadas na diversificação agrícola sobre o nematoide Heterorhabditis amazonensis. Semina: Ciências Agrárias, 42(6SUPL2), 3553–3566. https://doi.org/10.5433/1679-0359.2021v42n6SUPL2p3553

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

<< < 1 2 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.