Efeitos da uréia de liberação lenta nos parâmetros de fermentaçãono do rúmen em vitro, desempenho de crescimento, digestibilidade dos nutrientes e metabolitos séricos de gado de corte

Autores

  • Huan Liang Jiangxi Agricultural University https://orcid.org/0000-0002-8918-4904
  • Erlong Zhao Jiangxi Agricultural University
  • Chunyan Feng Menon Animal Nutrition Technology Co
  • Jianfei Wang Menon Animal Nutrition Technology Co
  • Lanjiao Xu Jiangxi Agricultural University
  • Zengmin Li Jiangxi Agricultural University
  • Shitang Yang National Beef Cattle Industrial Technology System of Gaoan Test Station
  • Yu Ge Jiangxi Agricultural University
  • Lizhi Li Jiangxi Agricultural University
  • Mingren Qu Jiangxi Agricultural University

DOI:

https://doi.org/10.5433/1679-0359.2020v41n4p1399

Palavras-chave:

Gados de corte, Uréia de liberação lenta, Fermentação ruminal, Desempenho de crescimento, Metabólitos séricos.

Resumo

Os dois experimentos foram conduzidos para investigar os efeitos da uréia de liberação lenta nos parâmetros de fermentaçãono do rúmen em vitro, desempenho de crescimento, digestibilidade dos nutrientes e metabolitos séricos de gado de corte. O design de fator único foi aplicado em ambos os experimentos. As três dietas com diferentes fontes de nitrogênio, incluindo farelo de soja (Grupo de controle), uréia de liberação lenta (Grupo de uréia de liberação lenta) e uréia comum (Grupo de uréia) foi designado (concentre-se em relação forrageira foi de 4: 6). As dietas foram formuladas para serem isoenergéticas e isonitrógenas, 75% da farinha de soja na dieta controle foi substituída por 1,41% de uréia de liberação lenta e 1,15% de uréia no Grupo uréia de liberação lenta e Grupo uréia, respectivamente. No experimento 1, cinco gados Jinjiang saudáveis (peso corporal médio (PC) de 380 ± 17,1 kg) com fístulas ruminais permanentes foram utilizadas no experimento de fermentação do rúmen em vitro. Os resultados mostraram que a suplementação de uréia de liberação lenta aumentou a taxa de degradação da substância seca, substância orgânica digestível e concentração de ácido propiônico no líquido cultivado, e a suplementação de SRU diminuiu o pH, NH3-N, ácido graxo volátil total, ácido acético, concentração de ácido butírico e eficiência de crescimento microbiano no fluido cultivado. No experimento 2, dezoito gados mestiços Simmental (PC = 315 ± 5,2 kg) foram estratificados por PC e, em seguida, atribuído aos três grupos para ter PC igual entre os grupos. Os resultados mostraram que a suplementação de uréia de liberação lenta reduziu a ingestão média da substância seca, digestibilidade aparente do extrato etéreo, a atividade da glutationa peroxidase, os níveis de IgG e IgA, e a produção de tiiodotronina (T3) no soro, a suplementação de uréia de liberação lenta aumentou a digestibilidade aparente da concentração de substância seca e substância orgânica e concentração de alanina aminotransferase no soro. Esses resultados indicaram que algum farelo de soja pode ser substituída por uréia de liberação lenta e uréia na produção de gado de corte. Além disso, comparado com a uréia, uréia de liberação lenta teve um bom efeito de liberação sustentada. A substituição de algum farelo de soja por uréia de liberação lenta na dieta não teve impacto adverso na fermentação ruminal, desempenho de crescimento e metabolitos séricos de gados de corte.

Métricas

Carregando Métricas ...

Biografia do Autor

Huan Liang, Jiangxi Agricultural University

Student, Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Erlong Zhao, Jiangxi Agricultural University

Researcher Dr., Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Chunyan Feng, Menon Animal Nutrition Technology Co

Researcher, Menon Animal Nutrition Technology Co., Ltd, MANT, Shanghai, China.

Jianfei Wang, Menon Animal Nutrition Technology Co

Researcher, Menon Animal Nutrition Technology Co., Ltd, MANT, Shanghai, China.

Lanjiao Xu, Jiangxi Agricultural University

Researcher Dr, Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Zengmin Li, Jiangxi Agricultural University

Student, Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Shitang Yang, National Beef Cattle Industrial Technology System of Gaoan Test Station

Researcher, National Beef Cattle Industrial Technology System of Gaoan Test Station, NBCITS, Gaoan, China.

Yu Ge, Jiangxi Agricultural University

Student, Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Lizhi Li, Jiangxi Agricultural University

Student, Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Mingren Qu, Jiangxi Agricultural University

Prof. Dr., Jiangxi Provincial Institute of Feed Science, Key Laboratory of Animal Nutrition, Feed Engineering Research Center, Jiangxi Agricultural University, JAU, Nanchang, China.

Referências

Baker, J., Liu, J. P., Robertson, E. J., & Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75(1), 73-82. doi: 10.1016/s0092-8674(05)80085-6

Bannink, A., France, J., Lopez, S., Gerrits, W. J. J., Kebreab, E., Dijkstra, J. & Tamminga, S. (2007). Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Animal Feed Science and Technology, 143(1), 3-26. doi: 10.1016/j.anifeedsci.2007.05.002

Benedeti, P. D. B., Paulino, P. V. R., Marcondes, M. I., Valadares, S. C., Fº., Martins, T. S., Lisboa, E. F.,... & Duarte, M. S. (2014). Soybean meal replaced by slow release urea in finishing diets for beef cattle. Livestock Science, 165(1), 51-60. doi: 10.1016/j.livsci.2014.04.027 

Bianchi, A. E., Macedo, V. P., França, R. T., Lopes, S. T., Lopes, L. S., Stefani, L. M., ... & Silva, A. S. da. (2014). Effect of adding palm oil to the diet of dairy sheep on milk production and composition, function of liver and kidney, and the concentration of cholesterol, triglycerides and progesterone in blood serum. Small Ruminant Research, 117(1), 78-83. doi: 10.1016/j.smallrumres.2013.12.025 

Breier, B. H., Gluckman, P. D., & Bass, J. J. (1988). Influence of nutritional status and oestradiol-17β on plasma growth hormone, insulin-like growth factors-I and-II and the response to exogenous growth hormone in young steers. Journal of Endocrinology, 118(2), 243-250. doi: 10.1677/joe.0.1180243 10.1677/joe.0.1180243 

Brown, M. S., Ponce, C. H., & Pulikanti, R. (2006). Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. Journal of Animal Science, 84(13), 25-33. doi: 10.2527/2006.8413_supple25x 

Cappellozza, B. I., Bohnert, D. W., Schauer, C. S., Falck, S. J., Vanzant, E. S., Harmon, D. L., & Cooke, R. F. (2013). Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Science, 155(3), 214-222. doi: 10.1016/j.livsci.2013.05.002 

Carrico, J. A., Pinto, F. R., Simas, C., Nunes, S., Sousa, N. G., Frazao, N., & Almeida, J. S. (2005). Assessment of band-based similarity coefficients for automatic type and subtype classification of microbial isolates analyzed by pulsed-field gel electrophoresis. Journal of Clinical Microbiology, 43(11), 5483-5490. doi: 10.1128/jcm.43.11.5483-5490.2005 

Cherdthong, A., Wanapat, M., & Wachirapakorn, C. (2011). Influence of urea–calcium mixtures as rumen slow-release feed on in vitro fermentation using a gas production technique. Archives of Animal Nutrition, 65(3), 242-254. doi: 10.1080/1745039x.2011.568277 

Chizzotti, F. H. M., Pereira, O. G., Tedeschi, L. O., Valadares, S. C., Fº., Chizzotti, M. L., Leao, M. I., & Pereira, D. H. (2008). Effects of dietary nonprotein nitrogen on performance, digestibility, ruminal characteristics, and microbial efficiency in crossbred steers. Journal of Animal Science, 86(5), 1173-1181. doi: 10.2527/jas.2006-654 

Cone, J. W., van Gelder, A. H., Visscher, G. J., & Oudshoorn, L. (1996). Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Animal Feed Science and Technology, 61(1-4), 113-128. doi: 10.1016/0377-8401(96)00950-9 

Coxam, V., Davicco, M. J., Durand, D., Bauchart, D., Opmeer, F., & Barlet, J. P. (1990). Steroid hormone may modulate hepatic somatomedin C production in newborn calves. Neonatology, 58(1), 16-23. doi: 10.1159/000243226 

Doerge, D. R., & Chang, H. C. (2002). Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. Journal of Chromatography B, 777(1-2), 269-279. doi: 10.1016/s1570-0232(02)00214-3

Galina, M. A., Perez-Gil, F., Ortiz, R. M. A., Hummel, J. D., & Ørskov, R. E. (2003). Effect of slow release urea supplementation on fattening of steers fed sugar cane tops (Saccharum officinarum) and maize (Zea mays): ruminal fermentation, feed intake and digestibility. Livestock production science, 83(1), 1-11. doi: 10.1016/s0301-6226(03)00045-9 

Galo, E., Emanuele, S. M., Sniffen, C. J., White, J. H., & Knapp, J. R. (2003). Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. Journal of Dairy Science, 86(6), 2154-2162. doi: 10.3168/jds.s0022-0302(03)73805-3 

Gardinal, R., Calomeni, G. D., Cônsolo, N. R. B., Takiya, C. S., Freitas, J. E., Jr., Gandra, J. R., & Rennó, F. P. (2016). Influence of polymer-coated slow-release urea on total tract apparent digestibility, ruminal fermentation and performance of Nellore steers. Asian-Australasian Journal of Animal Sciences, 30(1), 34. doi: 10.5713/ajas.16.0058 

Goulart, M. A., Montagner, P., Lopes, M. S., Azambuja, R. D. C., Schwegler, E., Antunes, M. M., & del Pino, F. A. B. (2013). Milk composition, ruminal pH and metabolic parameters of dairy cows supplemented with slow-release urea. Acta Scientiae Veterinariae, 41(1), 1-13. doi: 10.21608/jsas.2017.3492 

Grant, J. L. (1979). Urea in supplements for growing young cattle on veld grazing in the dry season. South African Journal of Animal Science, 9(1), 33-39. doi: 10.1017/s0021859600010121 

Griswold, K. E., Apgar, G. A., Bouton, J., & Firkins, J. L. (2003). Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous culture. Journal of Animal Science, 81(1), 329-336. doi: 10.2527/2003.811329x 

Highstreet, A., Robinson, P. H., Robison, J., & Garrett, J. G. (2010). Response of Holstein cows to replacing urea with with a slowly rumen released urea in a diet high in soluble crude protein. Livestock Science, 129(1-3), 179-185. doi: 10.1016/j.livsci.2010.01.022 

Huang, Y., Zou, C., Wei, S., Liang, X., Li, S., Lu, T., & Liang, X. (2014). Effects of cysteamine on ruminal fermentation parameters and methane production of water buffalo by in vitro gas production method. Chinese Journal of Animal Nutrition, 26(1), 125-133. doi: 10.1093/jas/skz258.585 

Huntington, G. B., Harmon, D. L., Kristensen, N. B., Hanson, K. C., & Spears, J. W. (2006). Effects of a slow-release urea source on absorption of ammonia and endogenous production of urea by cattle. Animal Feed Science and Technology, 130(3-4), 225-241. doi: 10.1016/j.anifeedsci.2006.01.012 

Ingvartsen, K. L., & Moyes, K. (2013). Nutrition, immune function and health of dairy cattle. Animal, 7(s1), 112-122. doi: 10.1017/s175173111200170x 

Inostroza, J. F., Shaver, R. D., Cabrera, V. E., & Tricárico, J. M. (2010). Effect of diets containing a controlled-release urea product on milk yield, milk composition, and milk component yields in commercial Wisconsin dairy herds and economic implications. The Professional Animal Scientist, 26(2), 175-180. doi: 10.15232/s1080-7446(15)30577-5 

Ji, S. K., Zhang, F., Sun, Y. K., Deng, K. D., Wang, B., Tu, Y., ... & Diao, Q. Y. (2017). Influence of dietary slow release urea on growth performance, organ development and serum biochemical parameters of mutton sheep. Journal of Animal Physiology and Animal Nutrition, 101(5), 964-973. doi: 10.1111/jpn.12532 

Jin, D., Zhao, S. G., Zheng, N., Bu, D. P., Beckers, Y., & Wang, J. Q. (2018). Urea nitrogen induces changes in rumen microbial and host metabolic profiles in dairy cows. Livestock Science, 210(1), 104-110. doi: 10.1016/j.livsci.2018.02.011 

Klusmeyer, T. H., McCarthy, R. D., Jr., Clark, J. H., & Nelson, D. R. (1990). Effects of source and amount of protein on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. Journal of Dairy Science, 73(12), 3526-3537. doi: 10.3168/jds.s0022-0302(90)79052-2 

Kurata, M., Suzuki, M., & Agar, N. S. (1993). Antioxidant systems and erythrocyte life-span in mammals. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 106(3), 477-487. doi: 10.1016/0305-0491(93)90121-k 

Leung, K. C., Johannsson, G., Leong, G. M., & Ho, K. K. (2004). Estrogen regulation of growth hormone action. Endocrine reviews, 25(5), 693-721. doi: 10.1016/s1096-6374(08)70045-5 

Liang, H., Xu, L. J., Zhao, X. H., Bai, J., Chen, Z. D., Zhou, S.,,.. Qu, M. R. (2018). Effect of daidzein on fermentation parameters and bacterial community of finishing Xianan cattle. Italian Journal of Animal Science, 17(4), 950-958. doi: 10.1080/1828051X.2018.1431965

Liu, D. Y., He, S. J., Jin, E. H., Liu, S. Q., Tang, Y. G., Li, S. H., & Zhong, L. T. (2013). Effect of daidzein on production performance and serum antioxidative function in late lactation cows under heat stress. Livestock Science, 152(1), 16-20. doi: 10.1016/j.livsci.2012.12.003 

Lizarazo, A. C., Mendoza, G. D., Kú, J., Melgoza, L. M., & Crosby, M. (2014). Effects of slow-release urea and molasses on ruminal metabolism of lambs fed with low-quality tropical forage. Small Ruminant Research, 116(1), 28-31. doi: 10.1016/j.smallrumres.2013.10.009 

Ma, W., Ren, L., Wang, L., Ding, J., Zhao, J., & Meng, Q. (2011). Effect of supplemental levels of gelatinized starch-urea on growth performance and plasma biochemical indices of growing-finishing beef cattle. Chinese Journal of Animal Nutrition, 23(10), 1710-1715. doi: 10.13188/2325-4645.1000036 

Makkar, H. P. S., Sharma, O. P., Dawra, R. K., & Negi, S. S. (1982). Simple determination of microbial protein in rumen liquor. Journal of Dairy Science, 65(11), 2170-2173. doi: 10.3168/jds.s0022-0302(82)82477-6 

National Research Council (2007). Committee on Nutrient Requirements of Small Ruminants, National Research Council, Committee on the Nutrient Requirements of Small Ruminants, Board on Agriculture, Division on Earth, & Life Studies. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC: National Academy Press.

Norrapoke, T., Wanapat, M., Cherdthong, A., Kang, S., Phesatcha, K., & Pongjongmit, T. (2018). Improvement of nutritive value of cassava pulp and in vitro fermentation and microbial population by urea and molasses supplementation. Journal of Applied Animal Research, 46(1), 242-247. doi: 10.1080/09712119.2017.1288630 

Official Method of Analysis (1995). Animal Feeds: Association of Official Analytical Chemists (16nd ed.). Gaithersburg, MD: AOAC International.

Official Methods of Analysis of the Association of Official Analytical Chemists (1997). Animal Feeds: Association of Official Analytical Chemists (16nd ed.). Gaithersburg, MD: AOAC International.

Perdok, H. B., Leng, R. A., Bird, S. H., Habib, G., & Van Houtert, M. (1988). Improving livestock production from straw-based diets. In E. F. Thomson, & F. S. Thomson (Eds.), Increasing small ruminant productivity in semi-arid areas (pp. 81-91). Springer, Dordrecht.

Pinos-Rodríguez, J. M., Peña, L. Y., González-Muñoz, S. S., Bárcena, R., & Salem, A. (2010). Effects of a slow-release coated urea product on growth performance and ruminal fermentation in beef steers. Italian Journal of Animal Science, 9(1), 4. doi: 10.4081/ijas.2010.e4 

Ribeiro, S. S., Vasconcelos, J. T., Morais, M. G., Ítavo, C. B. C. F., & Franco, G. L. (2011). Effects of ruminal infusion of a slow-release polymer-coated urea or conventional urea on apparent nutrient digestibility, in situ degradability, and rumen parameters in cattle fed low-quality hay. Animal Feed Science and Technology, 164(2), 53-61. doi: 10.1016/j.anifeedsci.2010.12.003 

Schoenle, E., Zapf, J., Humbel, R. E., & Froesch, E. R. (1982). Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature, 296(5854), 252-253. doi: 10.1038/296252a0 

Stokes, S. R., Hoover, W. H., Miller, T. K., & Blauweikel, R. (1991). Ruminal digestion and microbial utilization of diets varying in type of carbohydrate and protein. Journal of Dairy Science, 74(3), 871-881. doi: 10.3168/jds.s0022-0302(91)78236-2 

Sutton, J. D., Dhanoa, M. S., Morant, S. V., France, J., Napper, D. J., & Schuller, E. (2003). Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. Journal of Dairy Science, 86(11), 3620-3633. doi: 10.3168/jds.s0022-0302(03)73968-x 

Taylor-Edwards, C. C., Elam, N. A., Kitts, S. E., McLeod, K. R., Axe, D. E., Vanzant, E. S.,... & Harmon, D. L. (2009). Influence of slow-release urea on nitrogen balance and portal-drained visceral nutrient flux in beef steers. Journal of Animal Science, 87(1), 209-221. doi: 10.2527/jas.2008-0913 

Turner, R., Baron, T., Wolffram, S., Minihane, A. M., Cassidy, A., Rimbach, G., & Weinberg, P. D. (2004). Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein. Free Radical Research, 38(2), 209-216. doi: 10.1080/10715760310001641854 

Van Keulen, J. Y. B. A., & Young, B. A. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282-287. doi: 10.2527/jas1977.442282x 

Wanapat, M., & Pimpa, O. (1999). Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 12(6), 904-907. doi: 10.5713/ajas.1999.904 

Wang, P., Zhao, S., Nan, X., Jin, D., & Wang, J. (2018). Influence of hydrolysis rate of urea on ruminal bacterial diversity level and cellulolytic bacteria abundance in vitro. PeerJ, 6(1), e5475. doi: 10.7717/peerj.5475 

Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39(8), 971-974. doi: 10.1021/ac60252a045 

Wolf, H. M., Fischer, M. B., Puhringer, H., Samstag, A., Vogel, E., & Eibl, M. M. (1994). Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes. Blood, 83(5), 1278-1288. doi: 10.1182/blood.v83.5.1278.1278 

Wright, A. D. G., & Klieve, A. V. (2011). Does the complexity of the rumen microbial ecology preclude methane mitigation? Animal Feed Science and Technology, 166(1), 248-253. doi: 10.1016/j.anifeedsci.2011.04.015 

Xin, H. S., Schaefer, D. M., Liu, Q. P., Axe, D. E., & Meng, Q. X. (2010). Effects of polyurethane coated urea supplement on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. Asian-Australasian Journal of Animal Sciences, 23(4), 491-500. doi: 10.5713/ajas.2010.90153 

Downloads

Publicado

2020-05-13

Como Citar

Liang, H., Zhao, E., Feng, C., Wang, J., Xu, L., Li, Z., Yang, S., Ge, Y., Li, L., & Qu, M. (2020). Efeitos da uréia de liberação lenta nos parâmetros de fermentaçãono do rúmen em vitro, desempenho de crescimento, digestibilidade dos nutrientes e metabolitos séricos de gado de corte. Semina: Ciências Agrárias, 41(4), 1399–1414. https://doi.org/10.5433/1679-0359.2020v41n4p1399

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)