Trocas gasosas, crescimento e produção de quiabeiro cultivado com águas salinas e adubação silicatada

Autores

DOI:

https://doi.org/10.5433/1679-0359.2020v41n5supl1p1937

Palavras-chave:

Abelmoschus esculentus L., Estresse salino, Silício.

Resumo

O excesso de sais na água e/ou no solo é um fator crítico que afeta adversamente a fisiologia, o crescimento e limita a produção dos cultivos no semiárido do Nordeste brasileiro. Uma forma de reduzir o efeito do estresse salino sobre as plantas é o uso da adubação com silício. Neste contexto, objetivou-se avaliar as trocas gasosas, o crescimento e a produção do quiabeiro cv. Valença em função da irrigação com águas salinas e doses de silício. O experimento foi conduzido em casa-de-vegetação no município de Pombal-PB. Adotou-se o delineamento experimental de blocos casualizados, em esquema fatorial 5 x 2, sendo cinco níveis de condutividade elétrica da água – CEa (0,3; 1,0; 1,7; 2,4 e 3,1 dS m-1) e duas doses de adubação silicatada (100 e 200 g de Si planta-1) com quatro repetições. O estresse salino aumentou a concentração intercelular de CO2 na câmera subestomática e reduziu a taxa de assimilação de CO2, a eficiência instantânea de carboxilação, o crescimento e a produção das plantas de quiabeiro. A eficiência intrínseca no uso da água e o peso médio de frutos do quiabeiro não foram influenciados pela irrigação com águas salinas e doses de silício. O fornecimento de 200 g planta-1 de silício diminuiu o efeito deletério do estresse salino sobre a condutância estomática e a área foliar de quiabeiro, aos 45 dias após a semeadura, no entanto, não aumentou produção da cultura.

Downloads

Não há dados estatísticos.

Biografia do Autor

Geovani Soares de Lima, Universidade Federal de Campina Grande

Prof. Visitante, Unidade Acadêmica de Ciências Agrárias, Universidade Federal de Campina Grande, UFCG, Pombal, PB, Brasil.

Cristiane Milenne Alves de Souza, Universidade Federal de Campina Grande

Discente, Curso de Graduação em Agronomia, UFCG, Centro de Ciências e Tecnologia Agroalimentar, Pombal, PB, Brasil.

Reginaldo Gomes Nobre, Universidade Federal Rural do Semiárido

Prof., Departamento de Ciências e Tecnologia, Universidade Federal Rural do Semi-Árido, UFERSA, Caraúbas, RN, Brasil.

Lauriane Almeida dos Anjos Soares, Universidade Federal de Campina Grande

Profª, Unidade Acadêmica de Ciências Agrárias, UFCG, Pombal, PB, Brasil.

Hans Raj Gheyi, Universidade Federal do Recôncavo da Bahi

Prof. Visitante, Núcleo de Engenharia de Água e Solo, Universidade Federal do Recôncavo da Bahia, UFRB, Cruz das Almas, BA, Brasil.

Lourival Ferreira Cavalcante, Universidade Federal da Paraíba

Prof., Centro de Ciências Agrárias, Universidade Federal da Paraíba, UFPB, Areia, PB, Brasil.

Pedro Dantas Fernandes, Universidade Federal de Campina Grande

Prof. Visitante, Centro de Tecnologia e Recursos Naturais, UFCG, Campina Grande, PB, Brasil.

Maria Amanda Guedes, Universidade Federal de Campina Grande

Discente, Curso de Graduação em Agronomia, UFCG, Centro de Ciências e Tecnologia Agroalimentar, Pombal, PB, Brasil.

Referências

Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi: 10.1016/j.biotechadv.2008.09.003

Cao, B. L., Qiang, M. A., Qiang, Z., Wang, L., & Xu, K. (2015). Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Scientia Horticulturae, 194(14), 53-62. doi: 10.1016/j.scienta.2015.07.037

Currie, H. A., & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100(7), 1383-1389. doi: 10.1093/aob/mcm247

Donagema, G. K., Campos, D. V. B. de, Calderano, S. B., Teixeira, W. G., & Viana, J. H. M. (Org.) (2011). Manual de métodos de análise de solos (2a ed., rev.). (EMBRAPA Solos. Documentos, 132). Rio de Janeiro: EMBRAPA Solos.

Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461-481. doi: 10.1007/s13593-015-0287-0

Ferraz, R. L. de S., Beltrão, N. E. de M., Melo, A. S. de, Magalhães, I. D., Fernandes, P. D., & Rocha, M. do S. (2014). Trocas gasosas e eficiência fotoquímica de cultivares de algodoeiro herbáceo sob aplicação de silício foliar. Semina: Ciências Agrárias, 35(2), 735-748. doi: 10.5433/1679-0359.2014v35n2p735

Ferreira, D. F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109-112. doi: 10.1590/S1413-70542014000200001

Fideles, J., Fº., Beltrão, N. E. M., & Pereira, A. S. (2010). Desenvolvimento de uma régua para medidas de área foliar do algodoeiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(7), 736-741. doi: 10.1590/S1415-43662010000700008

Gondim, F. A., Miranda, R. de S., Gomes, E., Fº., & Prisco, J. T. (2013). Enhanced salt tolerance in maize plants induced by H2O2 leaf spraying is associated with improved gas exchange rather than with non-enzymatic antioxidant system. Theoretical and Experimental Plant Physiology, 25(4), 251-260. doi: 10.1590/S2197-00252013000400003

Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014(1), 1-18. doi: 10.1155/2014/ 701596

Haghighi, M., & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161(24), 111-117. doi: 10.1016/j.scienta.2013.06.034

Hajiboland, R., Norouzi. F., & Poschenrieder, C. (2014). Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees, 28(4), 1065-1078. doi: 10.1007/ s00468-014-1018-x

Hasegawa, P. M. (2013) Sodium (Na+). homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 92(1):19-31. doi: 10.1016/j.envexpbot.2013.03.001

Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231(1), 68-78. doi: 10.1016/j.agee.2016.06.031

Larré, C. F., Moraes, D. M. de, & Lopes, N. F. (2011). Qualidade fisiológica de sementes de arroz tratadas com solução salina e 24-epibrassinolídeo. Revista Brasileira de Sementes, 33(1), 86-94. doi: 10.1590/S0101-31222011000100010

Lima, G. S. de, Dias, A. S., Gheyi, H. R., Soares, L. A. dos A., Nobre, R. G., Pinheiro, F. W. A., & Silva, A. A. R. da. (2017). Gas exchanges and production of colored cotton under salt stress and nitrogen fertilization. Bioscience Journal, 33(6), 1495-1505. doi: 10.14393/BJ-v33n6a2017-37109

Lima, G. S. de, Santos, J. B. dos, Soares, L. A. dos A., Gheyi, H. R., Nobre, R. G., & Pereira, R. F. (2016). Irrigação com águas salinas e aplicação de prolina foliar em cultivo de pimentão ‘All Big’. Comunicata Scientiae, 7(4), 513-522. doi: 10.14295/CS.v7i4.1671

Lima, M. de A., Castro, V. F. de, Vidal, J. B., & Enéas, J., Fº. (2011). Aplicação de silício em milho e feijão-de-corda sob estresse salino. Revista Ciência Agronômica, 42(2), 398-403. doi: 10.1590/S1806-66902011000200019

Lucena, C. C. de, Siqueira, D. L. de, Martinez, H. E. P., & Cecon, P. R. (2012). Efeito do estresse salino na absorção de nutrientes em mangueira. Revista Brasileira de Fruticultura, 34(1), 297-308. doi: 10.1590/S0100-29452012000100039

Lúcio, W. da S., Lacerda, C. F. de, Mendes, P. F., Fº., Hernandez, F. F. F., Neves, A. L. R., & Gomes, E., Fº. (2013). Crescimento e respostas fisiológicas do meloeiro inoculado com fungos micorrízicos arbusculares sob estresse salino. Semina: Ciências Agrárias, 34(4), 1587-1602. doi: 10.5433/1679-0359.2013v34n4p1587

Medeiros, P. R. F., Duarte, S. N., Uyeda, C. A., Silva, E. F. F., & Medeiros, J. F. de. (2012). Tolerância da cultura do tomate à salinidade do solo em ambiente protegido. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(1), 51-55. doi: 10.1590/S1415-43662012000100007

Melo, A. S. de, Silva, C. D. da, Jr., Fernandes, P. D., Sobral, L. F., Brito, M. E. B., & Dantas, J. D. M. (2009). Alterações das características fisiológicas da bananeira sob condições de fertirrigação. Ciência Rural, 39(3), 733-741. doi: 10.1590/S0103-84782008005000101

Moussa, H. R., & Galad, M. A. R. (2015). Comparative response of salt tolerant and salt sensitive maize (Zea mays L.) cultivars to silicon. European Journal of Academic Essays, 2(1), 1-5.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi: 10.1146/annurev.arplant.59.032607.092911

Novais, R. F., Neves, J. C. L., & Barros, N. F. (1991). Ensaio em ambiente controlado. In: A. J. Oliveira, W. E. Garrido, J. D. Araújo, & S. Lourenço (Eds.), Métodos de pesquisa em fertilidade do solo. Brasília: Embrapa SEA, 1991. p. 189-253.

Oliveira, A. P. de, Silva, O. P. R. da, Silva, J. A., Silva, D. F. da, Ferreira, D. T. de A., & Pinheiro, S. M. G. (2014). Produtividade do quiabeiro adubado com esterco bovino e NPK. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(10), 989-993. doi: 10.1590/1807-1929/agriambi.v18n10p989-993

Oliveira, W. J. de, Souza, E. R. de, Cunha, J. C., Silva, E. F. de F., & Veloso, V. de L. (2017). Leaf gas exchange in cowpea and CO2 efflux in soil irrigated with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(1), 32-37. doi: 10.1590/1807-1929/agriambi.v21n1p32-37

Paes, H. M. F., Esteves, B. dos S., & Sousa, E. F. de. (2012). Determinação da demanda hídrica do quiabeiro em Campos dos Goytacazes, RJ. Revista Ciência Agronômica, 43(2), 256-261. doi: 10.1590/S1806-66902012000200007

Pang, C., & Wang, B. (2008). Oxidative stress and salt tolerance in plants. Progress in Botany, 69(3), 231-245. doi: 10.1007/978-3-540-72954-9_9

Prazeres, S. da S., Lacerda, C. F. de, Barbosa, F. E. L., Amorim, A. V., Araújo, I. C. da S., & Cavalcante, L. F. (2015). Crescimento e trocas gasosas de plantas de feijão-caupi sob irrigação salina e doses de potássio. Revista Agro@mbiente On-line, 9(2), 111-118. doi: 10.18227/1982-8470ragro.v9i2.2161

Rezende, R. A. L. S., Rodrigues, F. A., Soares, J. D. R., Silveira, H. R. de O., Pasqual, M., & Dias, G. de M. G. (2018). Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry. Ciência Rural, 48(1), e20170176. doi: 10.1590/0103-8478cr20170176

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington: U. S. Department of Agriculture. Agriculture Handbook, 60.

Santos, H. C., Pereira, E. M., Medeiros, R. L. S. de, Costa, P. M. de A., & Pereira, W. E. (2019). Production and quality of okra produced with mineral and organic fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(2), 97-102. doi: 10.1590/1807-1929/agriambi.v23n2p97-102

Silva, E. N. da, Ribeiro, R. V., Ferreira-Silva, S. L., Viégas, R. A., & Silveira, J. A. G. (2011a). Salt stress induced damages on the photosynthesis of physic nut young plants. Scientia Agricola, 68(1), 62-68. doi: 10.1590/S0103-90162011000100010

Silva, F. L. B. da, Lacerda, C. F. de, Sousa, G. G. de, Neves, A. L. R., Silva, G. L. da, & Sousa, C. H. C. (2011b). Interação entre salinidade e biofertilizante bovino na cultura do feijão-de-corda. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(4), 383-389. doi: 10.1590/S1415-43662011000400009

Souto, A. G. L., Cavalcante, L. F., Diniz, B. L. M. T., Mesquita, F. O., Nascimento, J. A. M., & Lima, A. J., Neto. (2015). Água salina e biofertilizante bovino na produção de frutos e alocação de biomassa em noni (Morinda citrifolia L.). Revista Brasileira de Plantas Medicinais, 17(2), 340-349. doi: 10.1590/1983-084X/13_039

Souza, R. P., Machado, E. C., Silveira, J. A. G., & Ribeiro, R. V. (2011). Fotossíntese e acúmulo de solutos em feijoeiro caupi submetido à salinidade. Pesquisa Agropecuária Brasileira, 46(6), 586-592. doi: 10.1590/S0100-204X2011000600003

Suassuna, J. F., Fernandes, P. D., Brito, K. S. A. de, Nascimento, R. do, Melo, A. S. de, & Brito, M. E. B. (2014). Trocas gasosas e componentes de crescimento em porta-enxertos de citros submetidos à restrição hídrica. Irriga, 19(3), 464-477. doi: 10.15809/irriga.2014v19n3p464

Vieira, I. G. S., Nobre, R. G., Dias, A. S., & Pinheiro, F. W. A. (2016). Cultivation of cherry tomato under irrigation with saline water and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 55-61. doi: 10.1590/1807-1929/agriambi.v20n1p55-61

Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472. doi: 10.1007/s13593-013-0194-1

Downloads

Publicado

2020-08-07

Como Citar

Lima, G. S. de, Souza, C. M. A. de, Nobre, R. G., Soares, L. A. dos A., Gheyi, H. R., Cavalcante, L. F., … Guedes, M. A. (2020). Trocas gasosas, crescimento e produção de quiabeiro cultivado com águas salinas e adubação silicatada. Semina: Ciências Agrárias, 41(5supl1), 1937–1950. https://doi.org/10.5433/1679-0359.2020v41n5supl1p1937

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 5 6 > >> 

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.