Modelo fotossintético para cultivar cítrico Huangguogan

Autores

  • Ling Liao Sichuan Agricultural University https://orcid.org/0000-0002-2860-8654
  • Yi Ronga Sichuan Agricultural University
  • Xia Qiua Sichuan Agricultural University
  • Tiantian Donga Sichuan Agricultural University
  • Zhihui Wang Sichuan Agricultural University

DOI:

https://doi.org/10.5433/1679-0359.2020v41n1p61

Palavras-chave:

Cultivar cítrico Huangguogan, Curvas de resposta à luz, Parâmetros fotossintéticos.

Resumo

O enxerto é uma medida eficaz para melhorar a taxa fotossintética de citros. As respostas leves da fotossíntese em folhas de Huangguogan (cultivar de citros Huangguogan), Huanggougan / Trifoliate (HG / PT), Huanggougan / Tangerine (HG / CR) e Huanggougan / Ziyang Xiangcheng (HG / CJ) foram estudadas usando o sistema de fotossíntese portátil LI-COR 6400.Curvas de resposta à luz e parâmetros fotossintéticos foram analisados e ajustados usando o modelo de hipérbole retangular (RHM), o modelo exponencial (EM), o modelo de hipérbole não retangular (NRHM) e o modelo de hipérbole retangular modificado (MRHM). Os resultados mostraram que: (1) O enxerto pode mudar as características fotossintéticas de Huangguogan, e o valor da taxa de fotossíntese de HG / CJ é o maior; (2) As curvas de resposta à luz da taxa fotossintética líquida (PN), do ponto de compensação de luz (LCP) e da taxa de respiração escura (RD) foram bem ajustadas usando os quatro modelos acima. A hipérbole retangular modificada foi o melhor modelo na adaptação dos dados; o modelo de hipérbole não-retangular foi o segundo, e o modelo de hipérbole retangular foi o mais pobre.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ling Liao, Sichuan Agricultural University

Studente, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

Yi Ronga, Sichuan Agricultural University

Studente, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

Xia Qiua, Sichuan Agricultural University

Studente, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

Tiantian Donga, Sichuan Agricultural University

Studente, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

Zhihui Wang, Sichuan Agricultural University

Prof., College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

Referências

Andersen, P. C. (1991). Leaf gas exchange of 11 species of fruit crops with reference to sun-tracking / non-sun-tracking responses. Canadian Journal of Plant Science, 71(4), 1183-1193. doi: 10.4141/cjps91-166

Baly, E. C. (1935). The kinetics of photosynthesis. Proceedings of the Royal Society B: Biology Sciences, 117(804), 218-239. doi: 10.1038/134933a0

Bassal, M. (2009). Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Scientia Horticulturae, 119, 132-137. doi: 10.1016/j.scienta.2008.07.020

Bassman, J., & Zwier, J. C. (1991). Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids clone. Tree Physiology, 8(1), 145-159. doi: 10.1093/treephys/8.2.145

Blankenship, R. E. (2002). Molecular mechanisms of photosynthesis. Oxford: Blackwell Sci.

Castle, W. S., Baldwin, J. C., & Muraro, R. P. (2010). Performance of ‘Valencia’ sweet orange trees on 12 rootstocks at two locations and an economic interpretation as a basis for rootstock selection. Hortscience A Publication of the American Society for Horticultural Science, 45(454), 523-533.

Casde, W. S., Tucker, D. H., & Krezdom, A. H. (1993). Rootstocks for Florida citrus. Gainesville: University of Florida.

Chen, J., Zhang, G. C., Zhang, S. Y., & Wang, M. J. (2008). Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture. Chinese Journal of Applied Ecology, 19(6), 1185-1190. doi: 10.13287/j.1001-9332.2008.0225

Chen, Z. Y., Peng, Z. S., Yang, J., Chen, W. Y., & Ou-Yang, Z. M. (2011). A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 49(3), 467-471. doi: 10.1007/s11099-011-0056-5

Duan, A. G., & Zhang, J. G. (2009). Selection of models of photosynthesis in response to irradiance and definition of attribute of weak light. Forest Research, 22(6), 765-771. doi: 10.1007/978-1-4020-9623-5_5

Eilers, P. H. C., & Peeters, J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3), 199-215. doi: 10.1016/0304-3800(88)90057-9

Evans, J. R., Jakonbsen, I., & Ogren, E. (1993). Photosynthetic light-response curves. Planta, 189(2), 191-200. doi: 10.1007/bf00195075

Falkowski, P. G., & Wirick, C. D. (1981). A simulation model of the effects of vertical mixing on primary productivity. Marine Biology, 65(1), 69-75. doi: 10.1007/BF00397069

Farquhar, G. D., Caemmerers, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. doi: 10.1007/BF00386231

Fasham, M. J. R., & Platt, T. (1983). Photosynthesis response of phytoplankton to light: a physiological model. Proceedings of the Royal Society B: Biology Sciences, 219(1217), 355-370. doi: 10.1098/rspb.1983.0078

Forner-Giner, M. A., Alcaide, A., Primo-Millo, E., & Fomer, J. B. (2003). Performance of ‘Navelina’ orange on 14 rootstocks in Northern Valencia. Scientia Horticulturae, 98, 223-232. doi: 10.1016/S0304-4238(02)00227-3

Georgiou, A. (2002). Evaluation of rootstocks for ‘Clementine’ mandarin in Cyprus. Scientia Horticulturae, 93(1), 29-38. doi: 10.1016/s0304-4238(01)00311-9

Gmitter, F. G., Xiao, S. Y., Huang, S., Hu, X. L., Garnsey, S. M., & Deng, Z. (1996). A localized linkage map of the citrus tristeza virus resistance gene region. Theoretical and Applied Genetic, 92(6), 688-695. doi: 10.1007/BF00226090

González-Mas, M. C., Llosa, M. J., & Quijano, A. (2009). Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Hortscience, 44(2), 280-283. doi: 10.21273/HORTSCI.44.2.280

Govindjee, Krogmann D. (2004). Discoveries in oxygenic photosynthesis (1727-2003): A perspective. Photosynthesis Research, 80(1-3), 15-57. doi: 10.1023/b:pres.0000030443.63979.e6

Hand, D. W., Warren, W. J. W., & Acock, B. (1993). Effects of light and CO2 on net photosynthetic rates of stands of aubergine and Amaranthus. Annals of Botany, 71(3), 209-216. doi: 10.1006/anbo.1993.1026

Hernández, F., Pinochet, J., Moreno, M. A., Martínez, J. J., & Legua, P. (2010). Performance of Prunus rootstocks for apricot in Mediterranean conditions. Scientia Horticulturae, 124(3), 354-359. doi: 10.1016/j.scienta.2010.01.020

Huang, H. Y., Dou, X. Y., Sun, B. Y. Deng, B., Wu, G., & Peng, C. (2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica, 29(6), 2861-2867. doi: 10.3321/j.issn:1000-0933.2009.06.012

Jassby, A. D., & Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21(4), 540-547. doi: 10.4319/lo.1976.21.4.0540

Liao, L., Cao, S. Y., Rong, Y., & Wang, Z. H. (2016). Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan. Genetics and Molecular Research, 15(1), 1-10. doi: 10.4238/gmr.15017690

Lang, Y., Wang, M., Zhang, G. C., & Zhao, Q. K. (2013). Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica, 51(3), 370-378. doi: 10.1007/s11099-013-0036-z

Li H.S. (2002). Modern Plant Physiology. Beijing: Higher Education Press.

Li, Y. X., Yang, Z. Q., & Zhang, F. C. (2011). Applicability of different photosynthesis models for winter wheat in the Lower Yangtze River. Chinese Journal of Agrometeorology, 32(4), 588-592. doi: 10.3969/j.issn.1000-6362.2011.04.018

Liu, Q., Li, F. R., & Xie, L. F. (2016). Optimal model of photosynthesis-light response curve in canopy of planted Larix olgensis tree. Chinese Journal of Applied Ecology, 2(8), 2420-2428. doi: 10.13287/j.1001-9332.201608.023

Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photo inhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology,45(1), 633- 662. doi: 10.1146/annurev.pp.45.060194.003221

Lu, P. L., Yu, Q., Luo Y., & Liu, J. D. (2001). Fitting light response curves of photosynthesis of winter wheat. Agricultural Meteorology, 22(2), 12-14. doi: 10.3969/j.issn.1000-6362.2001.02.003

Marshall, B., & Biscoe, P. V. (1980). A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 31(120), 29-39. doi: 10.1093/jxb/31.1.41

Megard, R. O. D., Tonkyn, W., & Senti, W. H. (1984). Kinetics of oxygenic photosynthesis in planktonic algae. Journal of Plankton Research, 6(2), 325-337. doi: 10.1093/plankt/6.2.325

Morinaga, K., & Ikeda, F. (1990). The effects of several rootstocks on photosynthesis, distribution of photosynthetic product, and growth of young satsuma mandarin trees. Journal of the Japanese Society for Horticultural Science, 59(1), 29-34. doi: 10.2503/jjshs.59.29

Pan, R. C. (2001). Plant Physiology. Beijing: Higher Education Press.

Papadakis, I. E., Dimassi, K. N., Bosabalidis, A. M. Therios, I. N., Patakas, A., & Giannakoula, A. (2004). Effects of B excess on some physiological and anatomical pararneters of ‘Navelina’ orange plants grafted on two rootstocks. Environmental & Experimental Botany, 51(2), 247-257. doi: 10.1016/j.envexpbot.2003.11.004

Peng, S. (2000). Single-leaf and canopy photosynthesis of rice. Studies in Plant Science, 7(1), 213-228. doi: 10.1016/S0928-3420(00)80017-8

Hardy, B., Sheehy, J. E., & Mitchell, P. L. (2000). Redesigning rice photosynthesis to increase yield. Studies in Plant Science, 7(1), 7-10. doi: 10.2135/cropsci2002.2227

Posada, J. M., Lechowicz, M. J., & Kitajima, K. (2009). Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany, 103(5), 795-805. doi: 10.1093/aob/mcn265

Rodríguez-Gamir, J., Intrigliolo, D. S., Primo-Millo, E., & Forner-Giner, M. A. (2010). Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiologia Plantarum, 139(2), 159-169. doi: 10.1111/j.1399-3054.2010.01351.x

Robert, E. S., Mark, A., & John, S. B. (1984). Kok effect and the quantum yield of photosynthesis. Plant Physiology, 75(1), 95-101. doi: 10.1104/pp.75.1.95

Rubio, F. C., Camacho, F. G., Sevilla, J. M. F., Chisti, Y., & Grima, E. M. (2003). A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering, 81(4), 459-473. doi: 10.1002/bit.10492

Steel, J. H. (1962). Environmental control of photosynthesis in the sea. Limmol. Oceanogr, 7(2), 137-150. doi: 10.4319/lo.1962.7.2.0137

Thornley, J. H. M. (1976). Mathematical Models in Plant Physiology. London: Academic Press.

Wang, Z. L., Yang, C. Du, J. C., Hu, H. F., Zhao, L. L., & Mao, X. T. (2009). Photosynthetic characteristics and photo-adaptability of four Melilotoides ruthenica ecotype. Chinese Journal of Ecology, 28(6), 1035-1040. doi: 10.13292/j.1000-4890.2009.0187

Webb, W. L., Newton, M., & Start, D. (1974). Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologica, 17(4), 281-291. doi: 10.2307/4215048

Wu, Q., Zhang G. C., Pei, B., Xu, Z. Q., & Fang, L.D. (2013). CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions. Chinese Journal of Applied Ecology, 24(6), 1517-1524. doi: 10.13287/j.1001-9332.2013.0327

Xia, J. B., Zhang, G. C., Wang, R. R., & Zhang, S. Y. (2014). Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: Comparison of four models. Photosynthetica, 52(2), 253-261. doi: 10.1007/s11099-014-0030-0

Xia, J. B., Zhang, J. Y., Zhang, G. C., & Li, T. (2009). Photosynthetic and physiological characteristics of three shrubs species in Shell islands of Yellow River Delta. Acta Botanica Boreali-Occidentalia Sinica, 29(7), 1452-1459. doi: 10.3321/j.issn:1000-4025.2009.07.025

Xia, J. B., Zhang, G.C., Liu, G., Han, W., Chen, J., & Liu, X. (2007). Light response of Wisteria sinensis leaves physiological parameters under different soil moisture conditions. Chinese Journal of Applied Ecology, 18(1), 30-34. doi: doi:10.1360/yc-007-1324

Xie, R., Pan, X., Zhang, J., Ma, Y., He, S., Zheng, Y., & Ma, Y. (2017). Effect of salt-stress on gene expression in citrus roots revealed by rna-seq. Functional & Integrative Genomics, 18(2), 155-173. doi: 10.1007/s10142-017-0582-8

Xu, D. Q. (2002). Photosynthetic Efficiency. Beijing: Shanghai Science and Technology Publishing House.

Xiong, C. Y., Zeng, W., Xiao, F. M., Zeng, Z.G., Tu, S. Y., Jiang, B., Qiu, F. Y., Wu, Y. F., & Jiang, X. (2012). An analysis of photosynthetic parameters among Schima superba provenances. Acta Ecologica Sinica, 32(11), 3628-3631. doi: 10.5846/stxb201103080281

Ye, Z. P., & Wang, J. L. (2009). Comparison and analysis of light-response models of plant photosynthesis. Journal of Jinggangshan University(Natural Science, 30(2), 9-13. doi: 10.3969/j.issn.1674-8085.2009.02.002

Ye, Z. P., & Gao, J. (2008). Change of carboxylation efficiency of Salvia miltiorrhiza in the vicinity of CO2 compensation point. Journal of Northwest University of Agriculture and Forestry Science and Technology Natural Science Edition, 36(5), 160-164. doi: 10.3321/j.issn:1671-9387.2008.05.029

Ye, Z. P., & Yu, Q. (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Chinese Journal of Plant Ecology, 32(6), 1356-1361. doi: 10.3773/j.issn.1005-264x.2008.06.016

Ye, Z. P. (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34(6), 727-740, doi: 10.3724/SP.J.1142.2010.40521

Ye, Z. P. (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45(4), 637-640. doi: 10.1007/s11099-007-0110-5

Ye, Z. P., & Yu, Q. (2008). A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 46(4), 637-640. doi: 10.1007/s11099-008-0110-0

Yu, Q., Zhang Y. Q., Liu, Y. F., & Shi, P. L. (2004). Simulation of the stomatal condutrance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 93(4), 435-441. doi: 10.1093/aob/mch023

Zeng, X. M., Yuan, L., & Shen, Y. G. (2002). Response of photosynthesis to light intensity in intact and detached leaves of Arabidopsis thaliana. Plant Physiology Communications, 38(1), 25-26. doi: 10.13592/j.cnki.ppj.2002.01.007

Zhang, K., Wan, Y. S., Liu, F. Z., Zhang, E. Q., & Wang, S. (2009). Response of photo-synthetic characteristics of peanut seedlings leaves to low light. Chinese Journal of Applied Ecology, 20(12), 2989-2995. doi: 10.13287/j.1001-9332.2009.0448

Zhong, C., Zhang, M. D., Hu, X. Q., & Zhu, Y. (2012). Effects of temperature variation on the light-response characteristics of tobacco leaf photosynthesis. Chinese Journal of Ecology, 31(2), 337-341. doi: 10.13292/j.1000-4890.2012.0066

Zonneveld, C. (1998). Photoinhibition as affected by photo-acclimation in phytoplankton: a model approach. Journal of Theoretical Biology, 193(1), 115-123. doi: 10.1006/jtbi.1998.0688

Downloads

Publicado

2020-01-10

Como Citar

Liao, L., Ronga, Y., Qiua, X., Donga, T., & Wang, Z. (2020). Modelo fotossintético para cultivar cítrico Huangguogan. Semina: Ciências Agrárias, 41(1), 61–72. https://doi.org/10.5433/1679-0359.2020v41n1p61

Edição

Seção

Artigos

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.