Modelo fotossintético para cultivar cítrico Huangguogan
DOI:
https://doi.org/10.5433/1679-0359.2020v41n1p61Palavras-chave:
Cultivar cítrico Huangguogan, Curvas de resposta à luz, Parâmetros fotossintéticos.Resumo
O enxerto é uma medida eficaz para melhorar a taxa fotossintética de citros. As respostas leves da fotossíntese em folhas de Huangguogan (cultivar de citros Huangguogan), Huanggougan / Trifoliate (HG / PT), Huanggougan / Tangerine (HG / CR) e Huanggougan / Ziyang Xiangcheng (HG / CJ) foram estudadas usando o sistema de fotossíntese portátil LI-COR 6400.Curvas de resposta à luz e parâmetros fotossintéticos foram analisados e ajustados usando o modelo de hipérbole retangular (RHM), o modelo exponencial (EM), o modelo de hipérbole não retangular (NRHM) e o modelo de hipérbole retangular modificado (MRHM). Os resultados mostraram que: (1) O enxerto pode mudar as características fotossintéticas de Huangguogan, e o valor da taxa de fotossíntese de HG / CJ é o maior; (2) As curvas de resposta à luz da taxa fotossintética líquida (PN), do ponto de compensação de luz (LCP) e da taxa de respiração escura (RD) foram bem ajustadas usando os quatro modelos acima. A hipérbole retangular modificada foi o melhor modelo na adaptação dos dados; o modelo de hipérbole não-retangular foi o segundo, e o modelo de hipérbole retangular foi o mais pobre.Downloads
Referências
Baly, E. C. (1935). The kinetics of photosynthesis. Proceedings of the Royal Society B: Biology Sciences, 117(804), 218-239. doi: 10.1038/134933a0
Bassal, M. (2009). Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Scientia Horticulturae, 119, 132-137. doi: 10.1016/j.scienta.2008.07.020
Bassman, J., & Zwier, J. C. (1991). Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids clone. Tree Physiology, 8(1), 145-159. doi: 10.1093/treephys/8.2.145
Blankenship, R. E. (2002). Molecular mechanisms of photosynthesis. Oxford: Blackwell Sci.
Castle, W. S., Baldwin, J. C., & Muraro, R. P. (2010). Performance of ‘Valencia’ sweet orange trees on 12 rootstocks at two locations and an economic interpretation as a basis for rootstock selection. Hortscience A Publication of the American Society for Horticultural Science, 45(454), 523-533.
Casde, W. S., Tucker, D. H., & Krezdom, A. H. (1993). Rootstocks for Florida citrus. Gainesville: University of Florida.
Chen, J., Zhang, G. C., Zhang, S. Y., & Wang, M. J. (2008). Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture. Chinese Journal of Applied Ecology, 19(6), 1185-1190. doi: 10.13287/j.1001-9332.2008.0225
Chen, Z. Y., Peng, Z. S., Yang, J., Chen, W. Y., & Ou-Yang, Z. M. (2011). A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 49(3), 467-471. doi: 10.1007/s11099-011-0056-5
Duan, A. G., & Zhang, J. G. (2009). Selection of models of photosynthesis in response to irradiance and definition of attribute of weak light. Forest Research, 22(6), 765-771. doi: 10.1007/978-1-4020-9623-5_5
Eilers, P. H. C., & Peeters, J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3), 199-215. doi: 10.1016/0304-3800(88)90057-9
Evans, J. R., Jakonbsen, I., & Ogren, E. (1993). Photosynthetic light-response curves. Planta, 189(2), 191-200. doi: 10.1007/bf00195075
Falkowski, P. G., & Wirick, C. D. (1981). A simulation model of the effects of vertical mixing on primary productivity. Marine Biology, 65(1), 69-75. doi: 10.1007/BF00397069
Farquhar, G. D., Caemmerers, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. doi: 10.1007/BF00386231
Fasham, M. J. R., & Platt, T. (1983). Photosynthesis response of phytoplankton to light: a physiological model. Proceedings of the Royal Society B: Biology Sciences, 219(1217), 355-370. doi: 10.1098/rspb.1983.0078
Forner-Giner, M. A., Alcaide, A., Primo-Millo, E., & Fomer, J. B. (2003). Performance of ‘Navelina’ orange on 14 rootstocks in Northern Valencia. Scientia Horticulturae, 98, 223-232. doi: 10.1016/S0304-4238(02)00227-3
Georgiou, A. (2002). Evaluation of rootstocks for ‘Clementine’ mandarin in Cyprus. Scientia Horticulturae, 93(1), 29-38. doi: 10.1016/s0304-4238(01)00311-9
Gmitter, F. G., Xiao, S. Y., Huang, S., Hu, X. L., Garnsey, S. M., & Deng, Z. (1996). A localized linkage map of the citrus tristeza virus resistance gene region. Theoretical and Applied Genetic, 92(6), 688-695. doi: 10.1007/BF00226090
González-Mas, M. C., Llosa, M. J., & Quijano, A. (2009). Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Hortscience, 44(2), 280-283. doi: 10.21273/HORTSCI.44.2.280
Govindjee, Krogmann D. (2004). Discoveries in oxygenic photosynthesis (1727-2003): A perspective. Photosynthesis Research, 80(1-3), 15-57. doi: 10.1023/b:pres.0000030443.63979.e6
Hand, D. W., Warren, W. J. W., & Acock, B. (1993). Effects of light and CO2 on net photosynthetic rates of stands of aubergine and Amaranthus. Annals of Botany, 71(3), 209-216. doi: 10.1006/anbo.1993.1026
Hernández, F., Pinochet, J., Moreno, M. A., Martínez, J. J., & Legua, P. (2010). Performance of Prunus rootstocks for apricot in Mediterranean conditions. Scientia Horticulturae, 124(3), 354-359. doi: 10.1016/j.scienta.2010.01.020
Huang, H. Y., Dou, X. Y., Sun, B. Y. Deng, B., Wu, G., & Peng, C. (2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica, 29(6), 2861-2867. doi: 10.3321/j.issn:1000-0933.2009.06.012
Jassby, A. D., & Platt, T. (1976). Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 21(4), 540-547. doi: 10.4319/lo.1976.21.4.0540
Liao, L., Cao, S. Y., Rong, Y., & Wang, Z. H. (2016). Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan. Genetics and Molecular Research, 15(1), 1-10. doi: 10.4238/gmr.15017690
Lang, Y., Wang, M., Zhang, G. C., & Zhao, Q. K. (2013). Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. Photosynthetica, 51(3), 370-378. doi: 10.1007/s11099-013-0036-z
Li H.S. (2002). Modern Plant Physiology. Beijing: Higher Education Press.
Li, Y. X., Yang, Z. Q., & Zhang, F. C. (2011). Applicability of different photosynthesis models for winter wheat in the Lower Yangtze River. Chinese Journal of Agrometeorology, 32(4), 588-592. doi: 10.3969/j.issn.1000-6362.2011.04.018
Liu, Q., Li, F. R., & Xie, L. F. (2016). Optimal model of photosynthesis-light response curve in canopy of planted Larix olgensis tree. Chinese Journal of Applied Ecology, 2(8), 2420-2428. doi: 10.13287/j.1001-9332.201608.023
Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photo inhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology,45(1), 633- 662. doi: 10.1146/annurev.pp.45.060194.003221
Lu, P. L., Yu, Q., Luo Y., & Liu, J. D. (2001). Fitting light response curves of photosynthesis of winter wheat. Agricultural Meteorology, 22(2), 12-14. doi: 10.3969/j.issn.1000-6362.2001.02.003
Marshall, B., & Biscoe, P. V. (1980). A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 31(120), 29-39. doi: 10.1093/jxb/31.1.41
Megard, R. O. D., Tonkyn, W., & Senti, W. H. (1984). Kinetics of oxygenic photosynthesis in planktonic algae. Journal of Plankton Research, 6(2), 325-337. doi: 10.1093/plankt/6.2.325
Morinaga, K., & Ikeda, F. (1990). The effects of several rootstocks on photosynthesis, distribution of photosynthetic product, and growth of young satsuma mandarin trees. Journal of the Japanese Society for Horticultural Science, 59(1), 29-34. doi: 10.2503/jjshs.59.29
Pan, R. C. (2001). Plant Physiology. Beijing: Higher Education Press.
Papadakis, I. E., Dimassi, K. N., Bosabalidis, A. M. Therios, I. N., Patakas, A., & Giannakoula, A. (2004). Effects of B excess on some physiological and anatomical pararneters of ‘Navelina’ orange plants grafted on two rootstocks. Environmental & Experimental Botany, 51(2), 247-257. doi: 10.1016/j.envexpbot.2003.11.004
Peng, S. (2000). Single-leaf and canopy photosynthesis of rice. Studies in Plant Science, 7(1), 213-228. doi: 10.1016/S0928-3420(00)80017-8
Hardy, B., Sheehy, J. E., & Mitchell, P. L. (2000). Redesigning rice photosynthesis to increase yield. Studies in Plant Science, 7(1), 7-10. doi: 10.2135/cropsci2002.2227
Posada, J. M., Lechowicz, M. J., & Kitajima, K. (2009). Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany, 103(5), 795-805. doi: 10.1093/aob/mcn265
Rodríguez-Gamir, J., Intrigliolo, D. S., Primo-Millo, E., & Forner-Giner, M. A. (2010). Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiologia Plantarum, 139(2), 159-169. doi: 10.1111/j.1399-3054.2010.01351.x
Robert, E. S., Mark, A., & John, S. B. (1984). Kok effect and the quantum yield of photosynthesis. Plant Physiology, 75(1), 95-101. doi: 10.1104/pp.75.1.95
Rubio, F. C., Camacho, F. G., Sevilla, J. M. F., Chisti, Y., & Grima, E. M. (2003). A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering, 81(4), 459-473. doi: 10.1002/bit.10492
Steel, J. H. (1962). Environmental control of photosynthesis in the sea. Limmol. Oceanogr, 7(2), 137-150. doi: 10.4319/lo.1962.7.2.0137
Thornley, J. H. M. (1976). Mathematical Models in Plant Physiology. London: Academic Press.
Wang, Z. L., Yang, C. Du, J. C., Hu, H. F., Zhao, L. L., & Mao, X. T. (2009). Photosynthetic characteristics and photo-adaptability of four Melilotoides ruthenica ecotype. Chinese Journal of Ecology, 28(6), 1035-1040. doi: 10.13292/j.1000-4890.2009.0187
Webb, W. L., Newton, M., & Start, D. (1974). Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecologica, 17(4), 281-291. doi: 10.2307/4215048
Wu, Q., Zhang G. C., Pei, B., Xu, Z. Q., & Fang, L.D. (2013). CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions. Chinese Journal of Applied Ecology, 24(6), 1517-1524. doi: 10.13287/j.1001-9332.2013.0327
Xia, J. B., Zhang, G. C., Wang, R. R., & Zhang, S. Y. (2014). Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: Comparison of four models. Photosynthetica, 52(2), 253-261. doi: 10.1007/s11099-014-0030-0
Xia, J. B., Zhang, J. Y., Zhang, G. C., & Li, T. (2009). Photosynthetic and physiological characteristics of three shrubs species in Shell islands of Yellow River Delta. Acta Botanica Boreali-Occidentalia Sinica, 29(7), 1452-1459. doi: 10.3321/j.issn:1000-4025.2009.07.025
Xia, J. B., Zhang, G.C., Liu, G., Han, W., Chen, J., & Liu, X. (2007). Light response of Wisteria sinensis leaves physiological parameters under different soil moisture conditions. Chinese Journal of Applied Ecology, 18(1), 30-34. doi: doi:10.1360/yc-007-1324
Xie, R., Pan, X., Zhang, J., Ma, Y., He, S., Zheng, Y., & Ma, Y. (2017). Effect of salt-stress on gene expression in citrus roots revealed by rna-seq. Functional & Integrative Genomics, 18(2), 155-173. doi: 10.1007/s10142-017-0582-8
Xu, D. Q. (2002). Photosynthetic Efficiency. Beijing: Shanghai Science and Technology Publishing House.
Xiong, C. Y., Zeng, W., Xiao, F. M., Zeng, Z.G., Tu, S. Y., Jiang, B., Qiu, F. Y., Wu, Y. F., & Jiang, X. (2012). An analysis of photosynthetic parameters among Schima superba provenances. Acta Ecologica Sinica, 32(11), 3628-3631. doi: 10.5846/stxb201103080281
Ye, Z. P., & Wang, J. L. (2009). Comparison and analysis of light-response models of plant photosynthesis. Journal of Jinggangshan University(Natural Science, 30(2), 9-13. doi: 10.3969/j.issn.1674-8085.2009.02.002
Ye, Z. P., & Gao, J. (2008). Change of carboxylation efficiency of Salvia miltiorrhiza in the vicinity of CO2 compensation point. Journal of Northwest University of Agriculture and Forestry Science and Technology Natural Science Edition, 36(5), 160-164. doi: 10.3321/j.issn:1671-9387.2008.05.029
Ye, Z. P., & Yu, Q. (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Chinese Journal of Plant Ecology, 32(6), 1356-1361. doi: 10.3773/j.issn.1005-264x.2008.06.016
Ye, Z. P. (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34(6), 727-740, doi: 10.3724/SP.J.1142.2010.40521
Ye, Z. P. (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45(4), 637-640. doi: 10.1007/s11099-007-0110-5
Ye, Z. P., & Yu, Q. (2008). A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 46(4), 637-640. doi: 10.1007/s11099-008-0110-0
Yu, Q., Zhang Y. Q., Liu, Y. F., & Shi, P. L. (2004). Simulation of the stomatal condutrance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 93(4), 435-441. doi: 10.1093/aob/mch023
Zeng, X. M., Yuan, L., & Shen, Y. G. (2002). Response of photosynthesis to light intensity in intact and detached leaves of Arabidopsis thaliana. Plant Physiology Communications, 38(1), 25-26. doi: 10.13592/j.cnki.ppj.2002.01.007
Zhang, K., Wan, Y. S., Liu, F. Z., Zhang, E. Q., & Wang, S. (2009). Response of photo-synthetic characteristics of peanut seedlings leaves to low light. Chinese Journal of Applied Ecology, 20(12), 2989-2995. doi: 10.13287/j.1001-9332.2009.0448
Zhong, C., Zhang, M. D., Hu, X. Q., & Zhu, Y. (2012). Effects of temperature variation on the light-response characteristics of tobacco leaf photosynthesis. Chinese Journal of Ecology, 31(2), 337-341. doi: 10.13292/j.1000-4890.2012.0066
Zonneveld, C. (1998). Photoinhibition as affected by photo-acclimation in phytoplankton: a model approach. Journal of Theoretical Biology, 193(1), 115-123. doi: 10.1006/jtbi.1998.0688
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2019 Semina: Ciências Agrárias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Semina: Ciências Agrárias adota para suas publicações a licença CC-BY-NC, sendo os direitos autorais do autor, em casos de republicação recomendamos aos autores a indicação de primeira publicação nesta revista.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao criador.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores. Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário.