Sistemas de preparo do solo e efeitos do tempo de nitrogênio no crescimento, manutenção da qualidade de grãos e verde no milho (Zea mays L.)

Autores

  • Allah Wasaya BZU Bahadur Sub Campus
  • Muhammad Tahir University of Agriculture Faisalabad
  • Tauqeer Ahmad Yasir BZU Bahadur Sub Campus
  • Muhammad Mansoor Javed University of Sargodha
  • Muhammad Ali Raza Sichuan Agricultural University
  • Muhammad Akram COMSATS University

DOI:

https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3007

Palavras-chave:

Teor de clorofila, Razão Área foliar, Área foliar específica, Qualidade de grãos, Intervalos de aplicação de nitrogênio, Sistemas de manejo.

Resumo

Nitrogênio (N), sendo móvel no solo, está exposto a várias perdas devido ao uso imprudente de fertilizantes nitrogenados e práticas convencionais de manejo do solo e das culturas, que podem ser minimizadas pela aplicação de nitrogênio temporal e diferentes práticas de preparo do solo. Este estudo foi realizado para elucidar o efeito de diferentes sistemas de preparo do solo e tempos de nitrogênio no crescimento, permanência e qualidade do grão verde no milho. Três sistemas de lavoura, viz. T1: preparo do solo com cultivador, T2: arado de aiveca + 2-cultivos, T3: escarificador + 2-cultivos; e cinco temporizações de azoto, viz. N1: todo na sementeira, N2: ½ na sementeira + ½ na V5 (fase de 5 folhas), N3: ½ na sementeira + ½ no pendoamento, N4: ½ na V5 + ½ na pompa, N5: 1/3 na sementeira + 1/3 em V5 + 1/3 no pendoamento). Sistemas de preparo do solo e aplicação de nitrogênio tiveram efeito significativo na área foliar por planta, área foliar específica e área foliar. Os sistemas de preparo do solo não tiveram efeito significativo na manutenção dos parâmetros de qualidade verde e de grãos, exceto para os teores de óleo. Entretanto, os tempos de nitrogênio tiveram efeito significativo sobre os teores de clorofila a, b e total, bem como parâmetros de qualidade de grãos. Os maiores teores de clorofila a, b e total foram observados com três fendas, isto é, 1/3 na semeadura + 1/3 em V5 + 1/3 no pendoamento comparado com outros tratamentos. Os resultados sugerem o cultivo do milho preparando o campo através do arado de cinzel e aplicando o N em três fendas para melhorar o seu crescimento, o teor de clorofila e a qualidade do grão.

Downloads

Não há dados estatísticos.

Biografia do Autor

Allah Wasaya, BZU Bahadur Sub Campus

Assistant Professor, College of Agriculture, BZU Bahadur Sub Campus, Layyah, Pakistan.

Muhammad Tahir, University of Agriculture Faisalabad

Associate Professor, Department of Agronomy, University of Agriculture Faisalabad, Pakistan.

Tauqeer Ahmad Yasir, BZU Bahadur Sub Campus

Assistant Professor, College of Agriculture, BZU Bahadur Sub Campus, Layyah, Pakistan.

Muhammad Mansoor Javed, University of Sargodha

Assistant Professor, Department of Agronomy, University of Sargodha, Sargodha, Pakistan.

Muhammad Ali Raza, Sichuan Agricultural University

Ph.D. Scholar, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.

Muhammad Akram, COMSATS University

Assistant Professor, Department of Environmental Sciences, COMSATS University, Islamabad, Vehari Campus 61100, Pakistan.

Referências

AMANULLAH.; HASSAN, M. J.; NAWAB, K.; ALI, A. Response of specific leaf area (SLA), leaf area index (LAI) and leaf area ratio (LAR) of maize (Zea mays L.) to plant density, rate and timing of nitrogen application. World Applied Sciences Journal, v. 2, n. 3, p. 235-243, 2007.

AMANULLAH; SHAH, P. Timing and rate of nitrogen application influence grain quality and yield in maize planted at high and low densities. Journal of the Science of Food and Agriculture, v. 90, n. 1, p. 21-29, 2010. DOI: 10.1002/jsfa.3769

ANDRIJA, S.; KVATERNJAK, I.; KISIC, I.; BIRKAS, M.; MARENCIC, D.; OREHOVACKI, V. Influence of tillage on soil properties, yields and protein content in grain of maize and soyabean. Journal of Environmental Protection and Ecology, v. 10, n. 4, p.1013-1031, 2009.

BAKHSH, A.; KANWAR, R. S.; BAILEY, T. B.; CAMBARDELLA, C. A.; KARLEN, D. L.; COLVIN, T. S. Cropping system effects on NO3- N loss with subsurface drainage water. Transactions of American Society of Agricultural Engineers, v. 45, n. 6, p. 1789-1797, 2002. DOI: 10.13031/2013.11430

BENGOUGH, A. G.; MCKENZIE, B. M.; HALLETT, P. D.; VALENTINE, T. A. Root elongation water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, v. 62, n. 1, p. 59-68, 2011. DOI: 10.1093/jxb/erq350.

BOOMSMA, C. R.; SANTINI, J. B.; TOLLENAAR, M.; VYN, T. J. Maize morphophysiological response to intense crowing and low nitrogen availability: an analysis and review. Agronomy Journal, Madison, v. 101, n. 6, p. 1426-1452, 2009. DOI: 10.2134/agronj2009.0082.

COCIU, A. I.; ALIONTE, E. Yield and some quality traits of winter wheat, maize and soybean, grown in different tillage and deep loosening systems aimed to soil conservation. Romanian Agricultural Research, v. 28, n. 1, p. 109-120, 2011.

COELHO, M. B.; MATEOS, L.; VILLALOBOS, F. J. Influence of a compacted loam subsoil layer on growth and yield of irrigated cotton in Southern Spain. Soil and Tillage Research, Amsterdam, v. 57, n. 3, p. 129-142, 2000. DOI: 10.1016/S0167-1987(00)00153-7

COOMBS, J.; HIND, G.; LEEGOOD, R. C.; TIESZEN, L. L.; VONSHAK, A. Analytical techniques. In: COOMBS, J.; HALL, D. O.; LONG, S. P.; SCURLOCK, J. M. O. (Ed.). Techniques in bio-productivity and photosynthesis. New York: Pergamon Press, 1987. p. 219-227.

D’HAENE, K.; VERMANG, J.; CORNELIS, M. W.; LEROY, B. L. M.; SCHIETTECATTE, W.; NEVE, D. S.; GABRIELS, D.; HOFMAN, G. Reduced tillage effects on physical properties of silt loam soils growing root crops. Soil and Tillage Research, Amsterdam, v. 99, n. 2, p. 279-290, 2008. DOI: 10.1016/j.still.2008.03.003

DINNES, D. L.; KARLEN, D. L.; JAYBES, D. B.; KASPAR, T. C.; HATFIELD, J. L.; COLVIN, T. S.; CAMBARDELLA, C. A. Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agronomy Journal, Madison, v. 94, n. 1, p. 153-171, 2002. DOI: 10.2134/agronj2002.0153

EKELOF, J.; GUAMAN, V.; JENSEN, E. S.; PERSSON, P. Inter-row subsoiling and irrigation increase starch potato yield, phosphorus use efficiency and quality parameters. Potato Research, v. 58, n. 1, p. 15-27, 2015. DOI: 10.1007/s11540-014-9261-5

GALLAIS, A.; COQUE, M.; BERTIN, P. Response to selection of a maize population for adaptation to high or low nitrogen fertilization. Maydica, v. 53, n. 1, p. 21-28, 2008.

HALVORSON, A. D.; BRIAN, J. W.; ALFRED, L. B. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Science Society of America Journal, v. 66, n. 1, p. 906-912, 2002. DOI:

HAMZA, M. A.; ANDERSON, W. K. Soil compaction in cropping systems. A review of the nature causes and possible solutions. Soil and Tillage Research, Amsterdam, v. 82, n. 2, p. 121-145, 2005. DOI: 10.1016/j.still.2004.08.009

HOU, H. P.; DING, Z. S.; MA, W.; LI, C. F.; ZHAO, M. Yield performance characteristics and regulation effects of plant density and sub-soiling tillage system for high yield population of summer maize. Acta Agronomica Sinica, v. 39, n. 6, p. 1069-1077, 2013. DOI:10.3724/SP.J.1006.2013.01069

HOU, X. Q.; LI, R.; JIA, Z. K.; HAN, Q. F.; WANG, W.; YANG, B. P. Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Research, v. 129, n. 4, p. 7-13, 2012. DOI: 10.1016/j.fcr.2011.12.021

JABRO, J. D.; STEVENS, W. B.; IVERSEN, W. M.; EVANS, R. G. Tillage depth effects on soil physical properties, sugarbeet yield and sugarbeet quality. Communications in Soil Science and Plant Analysis, v. 41, n. 7, p. 908-916, 2010. DOI: 10.1080/00103621003594677

JAMIL, M.; SAJAD, A.; AHMAD, M.; AKHTAR, M. F.; ABBASI, G. H.; ARSHAD, M. Growth, yield and quality of maize (Zea mays L.) fodder as affected by nitrogen-zinc interaction in arid climate. Pakistan Journal of Agricultural Sciences, v. 52, n. 3, p. 637-643, 2015.

LIANG, J. F.; QI, Q. Z.; JIA X. H., GONG, S. J.; HUANG, Y. F. Effects of different tillage managements on soil properties and corn growth. Ecology and Environmental Sciences, v. 19, n. 4, p. 945-950, 2010.

LIU, K.; WIATRAK, P. Corn production response to tillage and nitrogen application in dryland environment. Soil and Tillage Research, Amsterdam, v. 124, n. 8, p. 138-143, 2012. DOI: 10.1016/j.still.2012.05.017

LOW, N. H. Food analysis, 417/717. Laboratory manual deptt. of Applied Microbiology and Food Science: Uini. Saskatchewan, 1990.

LUPWAYI, N. Z.; LNAFOND, G. P.; ZIADI, N.; GRANT, A. G. Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil and Tillage Research, Amsterdam, v. 118, n. 1, p. 139-146, 2012. DOI:10.1016/j.still.2011.11.006

MA, B. L.; BISWAS, D. K. Field-level comparison of nitrogen rates and application methods on maize yield, grain quality and nitrogen use efficiency in a humid environment. Journal of Plant Nutrition, v. 39, n. 5, p. 727-741, 2016. DOI: 10.1080/01904167.2015.1106556

MA, B. L.; BISWAS, D. K. Precision N management for sustainable corn production. In: LICHTFOUSE, E.; GOYAL, A. (Ed.). Sustainable agriculture reviews. New York: Springer Publishing, 2015. Chapter 2, v. 6, p. x-x.

MA, B. L.; LIANG, B.; BISWAS, D. K.; MORRISON, M. J.; MCLAUGHLIN, N. B. The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutrient Cycling in Agroecosystem, v. 94, n. 1, p. 15-31, 2012. DOI: 10.1007/s10705-012-9522-0

MA, B. L.; WU, T. Y.; TREMBLAY, N.; DEEN, W.; MCLAUGHLIN, N. B.; MORRISON, M. J.; GREGORICH, E. G.; STEWART, G. Nitrous oxide fluxes from corn fields: On-farm assessment of the amount and timing of nitrogen fertilizer. Global Change Biology, v. 16, n. 1, p. 156-170, 2010. DOI: 10.1111/j.1365-2486.2009.01932.x

MAO, Y. Effects of incorrect rotary tillage operation on soil fertilizer protecting and moisture keeping and yield of wheat. Agriculture Development Equipment, v. 2, n. 1, p. 26-27, 2009.

MITCHELL, J. K.; MCISAAC, G. F.; WALKER, S. E.; HIRSHI, M. C. Nitrate in river and subsurface drainage flows from an east central Illinois watershed. Transactions of the ASABE, v. 432, n. x, p. 337-342, 2000. DOI:10.13031/2013.2709

MOSADDEGHI, M. R.; MORSHEDIZAD, M.; MAHBOUBI, A. A.; DEXTER, A. R.; SCHULIN, R. Laboratory evaluation of a model for soil crumbling for prediction of the optimum soil water content for tillage. Soil and Tillage Research, Amsterdam, v. 105, n. 2, p. 242-250, 2009. DOI: 10.1016/j.still.2009.08.005

MUTHUKUMAR, V. B.; VELAYUDHAM, K.; THAVAPRAKASH, N. Effect of plant growth regulators and time of nitrogen application on quality and green cob yield of baby corn (Zea mays L.). Madras Agriculture Journal, v. 92, n. 7-9, p. 545-548, 2005.

OFFICIAL METHODS OF ANALYSIS OF THE ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS - AOAC. 15th ed. association of Analytical Chemists Incorporation Virginia, 1990. v. 11.

OLESEN, J. E.; MUNKHOLM, L. J. Subsoil loosening in a crop rotation for organic farming eliminated plough pan with mixed effects on crop yield. Soil and Tillage Research, Amsterdam, v. 94, n. 2, p. 376-385, 2007. DOI: 10.1016/j.still.2006.08.015

SHARMA, P.; ABROL, V.; SHARMA, R. K. Impact of tillage and mulch management on economics energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptisols, India. European Journal of Agronomy, v. 34, n. 1, p. 46-51, 2011. DOI: 10.1016/j.eja.2010.10.003

SILVA, P. R. F.; STRIEDER, M. L.; COSER, R. P. S.; RAMBO, L.; SANGOI, L.; ARGENTA, G.; FORSTHOFER, E. L.; SILVA, A. A. Grain yield and crude protein content increase of maize hybrids with late nitrogen side-dressing. Scientia Agricola, Piracicaba, v. 62, n. 5, p. 487-492, 2005. DOI: 10.1590/S0103-90162005000500014

STEEL, R. G. D.; TORRIE, J. H.; DICKEY, D. A. Principles and procedures of statistics. A biometrical approach. New York: McGraw Hill Book Co., 1997. 666 p.

SUN, X.; DING, Z.; WANG, X.; HOU, H.; ZHOU, B.; YUE, Y. Subsoiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize. PLoS ONE, San Francisco, v. 12, n. 4, p. e0174952, 2017. DOI: 10.1371/journal.pone.0174952

TURNBULL, T. L.; KELLY, N.; ADAMS, M. A.; WARREN, C. R. Within-canopy nitrogen and photosynthetic gradients are unaffected by soil fertility in field-grown Eucalyptus globulus. Tree Physiology, v. 27, n. 11, p. 1607-1617, 2007. DOI: 10.1093/treephys/27.11.1607

URIBELARREA, M.; CRAFTS-BRANDNER, S. J.; BELOW, F. E. Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant and Soil, The Hague, v. 316, p. 151-160, 2009. DOI: 10.1007/s11104-008-9767-1

VANYINE, A. S.; TÓTH, B.; NAGY, J. Effect of nitrogen doses on the chlorophyll concentration, yield and protein content of different genotype maize hybrids in Hungary. African Journal of Agricultural Research, v. 7, n. 16, p. 2546-2552, 2012. DOI: 10.5897/AJAR11.979

VILLAMIL, M. B.; NAFZIGER, D. E. Corn residue, tillage, and nitrogen rate effects on soil carbon and nutrient stocks in Illinois. Geoderma, Amsterdam, v. 253-254, n. 1, p. 61-66, 2015. DOI: 10.1016/j.geoderma.2015.04.002

VITA, P. D.; PAOLO, E. D.; FECONDO, G.; FONZO, N. D.; PISANTED, M. No tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil and Tillage Research, Amsterdam, v. 92, n. 1-2, p. 69-78, 2007. DOI: 10.1016/j.still.2006.01.012

WANG, Y.; CHEN, Y.; RAHMAN, S.; FROESE, J. Tillage effects on soil penetration resistance and early crop growth for Red River clay. Canadian Biosystem Engineering, v. 51, p. 1-11, 2009.

WASAYA, A.; TAHIR, M.; ALI, H.; HUSSAINA, M.; YASIR, T. A.; SHER, A.; IJAZ, M.; SATTAR, A. Influence of varying tillage systems and nitrogen application on crop allometry, chlorophyll contents, biomass production and net returns of maize (Zea mays L.). Soil and Tillage Research, Amsterdam, v. 170, n. 1, p. 18-26, 2017a. DOI: 10.1016/j.still.2017.02.006

WASAYA, A.; TAHIR, M.; TANVEER, A.; YASEEN, M. Response of maize to tillage and nitrogen management. Journal of Animal and Plant Sciences, v. 22, n. 2, p. 452-456, 2012.

WASAYA, A.; TAHIR, M.; YASIR, T. A.; AATIF, H. M.; SHAHZAD, U. Response of maize (Zea mays L.) to different tillage regimes and nitrogen timings under semi-arid irrigated conditions. Pakistan Journal of Agriculture Sciences, v. 54, n. 3, p. 553-560, 2017b. DOI: 10.21162/PAKJAS/17.1729

WASAYA, A.; TAHIR, M.; YASIR, T. A.; AKRAM, M.; FAROOQ, O.; SARWAR, N. Soil physical properties, nitrogen uptake and grain quality of maize (Zea mays L.) as affected by tillage systems and nitrogen application. Italian Journal of Agronomy, v. 13, n. 4, p. 324-331, 2018b. DOI: 10.4081/ija.2018.1197

WASAYA, A.; TAHIR, M.; YASIR, T. A.; ALLAH, S.; HUSSAIN, M. Impact of tillage systems and temporal nitrogen application on soil properties, nitrogen uptake and net returns in maize. International Journal of Agriculture and Biology, v. 20, n. 9, p. 1953-1960, 2018a. DOI: 10.17957/IJAB/15.0714

YUSUF, D. D. Effect of variation in tillage systems on maize (Zea mays L.) establishment and grain yield in a semi-arid tropical climate. Journal of Agriculture Science and Technology, v. 8, n. 1, p. 171-179, 2006.

Downloads

Publicado

2019-09-30

Como Citar

Wasaya, A., Tahir, M., Yasir, T. A., Javed, M. M., Raza, M. A., & Akram, M. (2019). Sistemas de preparo do solo e efeitos do tempo de nitrogênio no crescimento, manutenção da qualidade de grãos e verde no milho (Zea mays L.). Semina: Ciências Agrárias, 40(6Supl2), 3007–3020. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3007

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

<< < 1 2 3 4 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.